Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stretch antisymmetric

Figure Al.2.8. Typical energy level pattern of a sequence of levels with quantum numbers nj for the number of quanta in the symmetric and antisymmetric stretch. The bend quantum number is neglected and may be taken as fixed for the sequence. The total number of quanta (n + n = 6) is the polyad number, which... Figure Al.2.8. Typical energy level pattern of a sequence of levels with quantum numbers nj for the number of quanta in the symmetric and antisymmetric stretch. The bend quantum number is neglected and may be taken as fixed for the sequence. The total number of quanta (n + n = 6) is the polyad number, which...
Figure Al.2.10. Birth of local modes in a bifurcation. In (a), before the bifiircation there are stable anhamionic symmetric and antisymmetric stretch modes, as in figure Al.2.6. At a critical value of the energy and polyad number, one of the modes, in this example the symmetric stretch, becomes unstable and new stable local modes are bom in a bifurcation the system is shown shortly after the bifiircation in (b), where the new modes have moved away from the unstable syimnetric stretch. In (c), the new modes clearly have taken the character of the anliamionic local modes. Figure Al.2.10. Birth of local modes in a bifurcation. In (a), before the bifiircation there are stable anhamionic symmetric and antisymmetric stretch modes, as in figure Al.2.6. At a critical value of the energy and polyad number, one of the modes, in this example the symmetric stretch, becomes unstable and new stable local modes are bom in a bifurcation the system is shown shortly after the bifiircation in (b), where the new modes have moved away from the unstable syimnetric stretch. In (c), the new modes clearly have taken the character of the anliamionic local modes.
A particular vibration will give an absorption peak in the IR spectrum only if the dipole moment of the molecule changes dunng the vibration Which vibration of carbon dioxide the sym metric stretch or the antisymmetric stretch is infrared active 2... [Pg.586]

The symmetric and antisymmetric stretching vibrations of methylamine can be viewed on Learning By Modeling... [Pg.951]

Diketones, syn-trans-open chains 1730-1710 Antisymmetrical stretching frequency of both... [Pg.740]

The CO2 laser is a near-infrared gas laser capable of very high power and with an efficiency of about 20 per cent. CO2 has three normal modes of vibration Vj, the symmetric stretch, V2, the bending vibration, and V3, the antisymmetric stretch, with symmetry species (t+, ti , and (7+, and fundamental vibration wavenumbers of 1354, 673, and 2396 cm, respectively. Figure 9.16 shows some of the vibrational levels, the numbering of which is explained in footnote 4 of Chapter 4 (page 93), which are involved in the laser action. This occurs principally in the 3q22 transition, at about 10.6 pm, but may also be induced in the 3oli transition, at about 9.6 pm. [Pg.358]

The antisymmetric stretching vibration. The molecule loses its original symmetry during the vibration. At the two extrema of the vibration the shapes of the molecule will be identical. Because the molecular polarizability is essentially the summation of all bond polarizabilities and is independent of direction along the internuclear axis, it will have identical values at the extrema. Consequently, the vibration is Raman inactive. [Pg.301]

FIGURE 2 la The three normal vibrational modes of 11,0. Two of these modes are principally stretching motions of the bonds, but mode v2 is primarily bending, (b) The four normal vibrational modes of C02. The first two are symmetrical and antisymmetrical stretching motions, and the last two are perpendicular bending motions. [Pg.217]

In a KI matrix the electronic absorption maximum of 82 - is observed at 400 nm, and the 88 stretching vibration by a Raman line at 594 cm k 83 shows a Raman line at 546 cm and an infrared absorption at 585 cm which were assigned to the symmetric and antisymmetric stretching vibrations, respectively. The bromides and iodides of Na, K, and Rb have also been used to trap 82 - but the wavenumbers of the 88 stretching vibration differ by as much as 18 cm- from the value in KI. The anion S3- has been trapped in the chlorides, bromides and iodides of Na, K, and Rb [120]. While the disulfide monoanion usually occupies a single anion vacancy [116, 122], the trisulfide radical anion prefers a trivacancy (one cation and two halide anions missing) [119]. [Pg.146]

The V (OCO) ion has a structured electronic photodissociation spectrum, which allows us to measure its vibrational spectrum using vibrationally mediated photodissociation (VMP). This technique requires that the absorption spectrum (or, in our case, the photodissociation spectrum) of vibrationally excited molecules differ from that of vibrationally unexcited molecules. The photodissociation spectrum of V (OCO) has an extended progression in the V OCO stretch, indicating that the ground and excited electronic states have different equilibrium V "—OCO bond lengths. Thus, the OCO antisymmetric stretch frequency Vj should be different in the two states, and the... [Pg.357]

Figure 11. Infrared resonance enhanced photodissociation spectrum of V (OCO)5 obtained by monitoring loss of CO2. The antisymmetric stretch of outer-shell CO2 is near 2349 cm (the value in free CO2, indicated by the dashed vertical line). The vibration shifts to 2375 cm for inner-shell CO2. Figure 11. Infrared resonance enhanced photodissociation spectrum of V (OCO)5 obtained by monitoring loss of CO2. The antisymmetric stretch of outer-shell CO2 is near 2349 cm (the value in free CO2, indicated by the dashed vertical line). The vibration shifts to 2375 cm for inner-shell CO2.
Figure 12. Vibrational action spectra of V (OCO) in the OCO antisymmetric stretch region, (a) Spectrum obtained by monitoring depletion in the photofragment produced by irradiation at the vibronic origin at 15,801 cm The IR absorption near 2391.5 cm removes molecules from V[" = 0, leading to an 8% reduction in the fragment yield, (b) Spectrum obtained by monitoring enhancement in the VO+ photofragment signal as the IR laser is tuned, with the visible laser fixed at 15,777 cm (the Vj = 1 v" = 1 transition). The simulated spectrum gives a more precise value of the OCO antisymmetric stretch vibration in V" (OCO) of 2392.0 cm . Figure 12. Vibrational action spectra of V (OCO) in the OCO antisymmetric stretch region, (a) Spectrum obtained by monitoring depletion in the photofragment produced by irradiation at the vibronic origin at 15,801 cm The IR absorption near 2391.5 cm removes molecules from V[" = 0, leading to an 8% reduction in the fragment yield, (b) Spectrum obtained by monitoring enhancement in the VO+ photofragment signal as the IR laser is tuned, with the visible laser fixed at 15,777 cm (the Vj = 1 v" = 1 transition). The simulated spectrum gives a more precise value of the OCO antisymmetric stretch vibration in V" (OCO) of 2392.0 cm .
Figure 13. Photodissociation spectrum of V (OCO), with assignments. Insets and their assignments show the photodissociation spectrum of molecules excited with one quanmm of OCO antisymmetric stretch, v" at 2390.9 cm . These intensities have been multiplied by a factor of 2. The shifts show that Vj (excited state) lies 24 cm below v ( (ground state), and that there is a small amount of vibrational cross-anharmonicity. The box shows a hot band at 15,591 cm that is shifted by 210 cm from the origin peak and is assigned to the V" -OCO stretch in the ground state. Figure 13. Photodissociation spectrum of V (OCO), with assignments. Insets and their assignments show the photodissociation spectrum of molecules excited with one quanmm of OCO antisymmetric stretch, v" at 2390.9 cm . These intensities have been multiplied by a factor of 2. The shifts show that Vj (excited state) lies 24 cm below v ( (ground state), and that there is a small amount of vibrational cross-anharmonicity. The box shows a hot band at 15,591 cm that is shifted by 210 cm from the origin peak and is assigned to the V" -OCO stretch in the ground state.

See other pages where Stretch antisymmetric is mentioned: [Pg.60]    [Pg.63]    [Pg.67]    [Pg.68]    [Pg.70]    [Pg.247]    [Pg.1176]    [Pg.580]    [Pg.586]    [Pg.586]    [Pg.159]    [Pg.161]    [Pg.161]    [Pg.161]    [Pg.185]    [Pg.185]    [Pg.426]    [Pg.416]    [Pg.31]    [Pg.586]    [Pg.872]    [Pg.46]    [Pg.82]    [Pg.302]    [Pg.217]    [Pg.152]    [Pg.40]    [Pg.344]    [Pg.356]    [Pg.357]    [Pg.357]    [Pg.358]    [Pg.359]    [Pg.360]    [Pg.361]    [Pg.361]   
See also in sourсe #XX -- [ Pg.95 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.504 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.525 ]

See also in sourсe #XX -- [ Pg.373 ]

See also in sourсe #XX -- [ Pg.479 ]




SEARCH



Antisymmetric

Antisymmetric stretching

Antisymmetric stretching frequencies

Antisymmetric stretching vibration

Antisymmetrization

Stretching mode, antisymmetric

Water, antisymmetric stretch

© 2024 chempedia.info