Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Brownian motion anomalous diffusion

For a particle evolving in a thermal bath, we focused our interest on the particle displacement, a dynamic variable which does not equilibrate with the bath, even at large times. As far as this variable is concerned, the equilibrium FDT does not hold. We showed how one can instead write a modified FDT relating the displacement response and correlation functions, provided that one introduces an effective temperature, associated with this dynamical variable. Except in the classical limit, the effective temperature is not simply proportional to the bath temperature, so that the FDT violation cannot be reduced to a simple rescaling of the latter. In the classical limit and at large times, the fluctuation-dissipation ratio T/Teff, which is equal to 1 /2 for standard Brownian motion, is a self-similar function of the ratio of the observation time to the waiting time when the diffusion is anomalous. [Pg.320]

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

The best physical model is the simplest one that can explain all the available experimental time series, with the fewest number of assumptions. Alternative models are those that make predictions and which can assist in formulating new experiments that can discriminate between different hypotheses. We start our discussion of models with a simple random walk, which in its simplest form provides a physical picture of diffusion—that is, a dynamic variable with Gaussian statistics in time. Diffusive phenomena are shown to scale linearly in time and generalized random walks including long-term memory also scale, but they do so nonlinearly in time, as in the case of anomalous diffusion. Fractional diffusion operators are used to incorporate memory into the dynamics of a diffusive process and leads to fractional Brownian motion, among other things. The continuum form of these fractional operators is discussed in Section IV. [Pg.27]

This leads us to one of the standard, but often inappropriate, explanations of anomalous diffusion using fractional Brownian motion with the probability density... [Pg.83]

In the present section, it is demonstrated how the linear response of an assembly of noninteracting polar Brownian particles to a small external field F applied parallel and perpendicular to the bias field Fo may be calculated in the context of the fractional noninertial rotational diffusion in the same manner as normal rotational diffusion [8]. In order to carry out the calculation, it is assumed that the rotational Brownian motion of a particle may be described by a fractional noninertial Fokker-Planck (Smoluchowski) equation, in which the inertial effects are neglected. Both exact and approximate solutions of this equation are presented. We shall demonstrate that the characteristic times of the normal diffusion process, namely, the integral and effective relaxation times obtained in Refs. 8, 65, and 67, allow one to evaluate the dielectric response for anomalous diffusion. Moreover, these characteristic times yield a simple analytical equation for the complex dielectric susceptibility tensor describing the anomalous relaxation of the system. The exact solution of the problem reduces to the solution of the infinite hierarchies of differential-recurrence equations for the corresponding relaxation functions. The longitudinal and transverse components of the susceptibility tensor may be calculated exactly from the Laplace transform of these relaxation functions using linear response theory [72]. [Pg.338]

This aspect of diffusion in inhomogeneous space is called anomalous diffusion [13-18] and ordinal diffusion which can be expressed as a Brownian motion is called normal diffusion or Euclid diffusion [14]. The definition of... [Pg.368]


See other pages where Brownian motion anomalous diffusion is mentioned: [Pg.289]    [Pg.366]    [Pg.486]    [Pg.149]    [Pg.242]    [Pg.261]    [Pg.587]    [Pg.83]    [Pg.84]    [Pg.257]    [Pg.312]    [Pg.327]    [Pg.335]    [Pg.347]    [Pg.364]    [Pg.398]    [Pg.419]    [Pg.745]   
See also in sourсe #XX -- [ Pg.253 , Pg.254 ]

See also in sourсe #XX -- [ Pg.253 , Pg.254 ]




SEARCH



Anomalous diffusion

Anomalous diffusion motion

Brownian diffusive motion

Brownian motion

Diffuse motion

Diffusion Brownian motion

Diffusion motions

Diffusive motion

© 2024 chempedia.info