Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron microscopy, analytical heterogeneous catalyst

Analytical Electron Microscopy of Heterogeneous Catalyst Particles... [Pg.305]

Although x-ray microanalysis in the STEM is the most developed form of analytical electron microscopy, many other types of information can be obtained when an electron beam interacts with a thin specimen. Figure 2 shows the various signals generated as electrons traverse a thin specimen. The following information about heterogeneous catalysts can be obtained from these signals ... [Pg.307]

Analytical electron microscopy (AEM) permits the determination of the elemental composition of a solid catalyst at the microscopic level by energy-dispersive detection of the electron-induced X-ray emission (EDX). Energy dispersive spectroscopy (EDS) is sensitive for elements with atomic numbers Z > 11. For lighter elements (Z < 11), electron energy loss spectroscopy (EELS) is applied. An example is shown in Figure 7 (bottom), which exhibits the elemental composition by EDX of two individual Pt/Rh particles on a carbon film. This analysis clearly demonstrates the heterogeneous composition of the alloy particles. [Pg.610]

Electron probe and X-ray fluorescence methods of analysis are used for rather different but complementary purposes. The ability to provide an elemental spot analysis is the important characteristic of electron probe methods, which thus find use in analytical problems where the composition of the specimen changes over short distances. The examination of the distribution of heavy metals within the cellular structure of biological specimens, the distribution of metal crystallites on the surface of heterogeneous catalysts, or the differences in composition in the region of surface irregularities and faults in alloys, are all important examples of this application. Figure 8.45 illustrates the analysis of parts of a biological cell just 1 pm apart. Combination of electron probe analysis with electron microscopy enables visual examination to be used to identify the areas of interest prior to the analytical measurement. [Pg.350]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]


See other pages where Electron microscopy, analytical heterogeneous catalyst is mentioned: [Pg.213]    [Pg.341]    [Pg.220]    [Pg.245]    [Pg.316]    [Pg.273]   


SEARCH



Analytical electron microscopy

Analytical microscopy

Catalyst electronics

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Electron analytical

Electron analytics

Electron heterogeneous

Electron microscopy catalysts

Heterogenized catalysts

© 2024 chempedia.info