Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amyloid-like fibrils refolding models

Fig. 2. Classes of structural models of amyloid-like fibrils. The Refolding models propose that a native protein (circle) partially or completely unfolds to attain a new fold (rectangle) in the fibril (stack of rectangles). In contrast, the Gain-of-Interaction models propose that only part of the native protein changes and takes on a new structure in the fibril. The remainder of the protein (partial circle) retains its native structure. The Natively Disordered models begin with disordered proteins or protein fragments, and these become ordered in the fibril. PolyQ refers to polyglutamine. Fig. 2. Classes of structural models of amyloid-like fibrils. The Refolding models propose that a native protein (circle) partially or completely unfolds to attain a new fold (rectangle) in the fibril (stack of rectangles). In contrast, the Gain-of-Interaction models propose that only part of the native protein changes and takes on a new structure in the fibril. The remainder of the protein (partial circle) retains its native structure. The Natively Disordered models begin with disordered proteins or protein fragments, and these become ordered in the fibril. PolyQ refers to polyglutamine.
Fig. 3. Refolding model of insulin protofilaments, from Jimenez et al. (2002). (A) Ribbon diagram of the crystal structure of porcine insulin (PDB ID code 3INS), generated with Pymol (DeLano, 2002). The two chains are shown as dark and light gray with N- and C-termini indicated. The dotted lines represent the three disulfide bonds 1 is the intrachain and 2 and 3 are the interchain bonds. (B) Cartoon representation of the structure of monomeric insulin in the fibril, as proposed by Jimenez et al. (2002). The thick, arrowed lines represent /1-strands, and thinner lines show the remaining sequence. The disulfide bonds are as represented in panel A, and N- and C-termini are indicated. (Components of this panel are not to scale.) (C) Cartoon representation of an insulin protofilament, showing a monomer inside. The monomers are proposed to stack with a slight twist to form two continuous /(-sheets. (Components of this panel, including the protofilament twist, are not to scale.) In the fibril cross sections presented byjimenez et al. (2002), two, four, or six protofilaments are proposed to associate to form the amyloid-like fibrils. Fig. 3. Refolding model of insulin protofilaments, from Jimenez et al. (2002). (A) Ribbon diagram of the crystal structure of porcine insulin (PDB ID code 3INS), generated with Pymol (DeLano, 2002). The two chains are shown as dark and light gray with N- and C-termini indicated. The dotted lines represent the three disulfide bonds 1 is the intrachain and 2 and 3 are the interchain bonds. (B) Cartoon representation of the structure of monomeric insulin in the fibril, as proposed by Jimenez et al. (2002). The thick, arrowed lines represent /1-strands, and thinner lines show the remaining sequence. The disulfide bonds are as represented in panel A, and N- and C-termini are indicated. (Components of this panel are not to scale.) (C) Cartoon representation of an insulin protofilament, showing a monomer inside. The monomers are proposed to stack with a slight twist to form two continuous /(-sheets. (Components of this panel, including the protofilament twist, are not to scale.) In the fibril cross sections presented byjimenez et al. (2002), two, four, or six protofilaments are proposed to associate to form the amyloid-like fibrils.
The Refolding, Gain-of-Interaction, and Natively Disordered classes of fibril models are at least partly consistent with the common properties of amyloid and amyloid-like fibrils. We summarize consistencies, inconsistencies, and uncertainties linking model class and amyloid property in Table I. In the following paragraphs, we describe these properties and discuss the extent to which they may be explained by the various classes of models. [Pg.265]

The extreme stability of amyloid and amyloid-like fibrils is difficult to understand in terms of the three classes of fibril models. For the Refolding models, it has been suggested that the amyloid conformation is a default conformation for a polypeptide chain (Dobson, 1999). However, these models do not give a clear indication of what types of interactions differ in the amyloid conformation versus the native conformation, and so it is unclear why the amyloid conformation should be more stable. Also, it seems that the elevated protein concentrations associated with fibril formation might disproportionately favor nonspecific aggregation of the destabilized intermediate over amyloid fibril formation. [Pg.271]


See other pages where Amyloid-like fibrils refolding models is mentioned: [Pg.13]    [Pg.236]    [Pg.241]    [Pg.270]    [Pg.151]   
See also in sourсe #XX -- [ Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 ]




SEARCH



Amyloid

Amyloid fibril model

Amyloid fibrils

Amyloid-like fibrils

Fibrillation model

Fibrillization amyloids

Refolding models

© 2024 chempedia.info