Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino-carbonyl complex

Cyclopentene-l-dithiocarboxylic acid, 2-amino-meta complexes, 2, 800 Cyclophane chlorophylls, 3, 58 Cyclophane hemes iron complexes, 4,1269 Cyclophosphazenes metal complexes, 2, 81 Cyclopropane carbonylation... [Pg.118]

A combination of Co-mediated amino-carbonylation and a Pauson-Khand reaction was described by Pericas and colleagues [286], with the formation of five new bonds in a single operation. Reaction of l-chloro-2-phenylacetylene 6/4-34 and dicobalt octacarbonyl gave the two cobalt complexes 6/4-36 and 6/4-37 via 6/4-35, which were treated with an amine 6/4-38. The final products of this domino process are azadi- and azatriquinanes 6/4-40 with 6/4-39 as an intermediate, which can also be isolated and separately transformed into 6/4-40 (Scheme 6/4.11). [Pg.464]

Mono amino carbonylation of 1-alkynes has also been reported, in the presence of a stoichiometric amount of a Ni(II) complex (Eq. 25) [97,98] or of... [Pg.252]

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

Mannich reactions give rise to (i-amino carbonyl compounds which are amenable to further synthetic manipulations. Numerous stereoselective variants have been achieved by means of different types of catalysts including both metal complexes and organic molecules. In 2004, the groups of Akiyama and Terada independently selected this transformation as a model reaction for the introduction of a novel chiral motif to asymmetric catalysis [14, 15]. [Pg.399]

In 2004, Kobayashi et al. introduced enecarbamates as nucleophiles to asymmetric catalysis [48], The addition of enecarbamates to imines in the presence of a chiral copper complex provides access to P-amino imines which can be hydrolyzed to the corresponding p-amino carbonyl compounds [49],... [Pg.418]

Scheme 2.29 depicts two of the first examples of microwave-assisted carbonylation reactions7. In these reactions, the temperature controls the rate of the CO release. Thus, during heating at 150°C in sealed vessels, carbon monoxide was smoothly emitted from the molybdenum carbonyl complex into the reaction mixture (Fig. 2.1, Profile A). As a result, aryl iodides and bromides underwent efficient amino carbonylation with non-hindered, aliphatic, primary and secondary amines in only 15 min, using Herrmann s palladacycle as pre-catalyst7 (Scheme 2.29). In contrast, at a reaction temperature of 210°C, carbon monoxide was liberated almost instantaneously (Fig. 2.1, Profile B). Scheme 2.29 depicts two of the first examples of microwave-assisted carbonylation reactions7. In these reactions, the temperature controls the rate of the CO release. Thus, during heating at 150°C in sealed vessels, carbon monoxide was smoothly emitted from the molybdenum carbonyl complex into the reaction mixture (Fig. 2.1, Profile A). As a result, aryl iodides and bromides underwent efficient amino carbonylation with non-hindered, aliphatic, primary and secondary amines in only 15 min, using Herrmann s palladacycle as pre-catalyst7 (Scheme 2.29). In contrast, at a reaction temperature of 210°C, carbon monoxide was liberated almost instantaneously (Fig. 2.1, Profile B).
Because the steric effect contributes to the complex formation between guest and host, the chiral resolution on these CSPs is affected by the structures of the analytes. Amino acids, amino alcohols, and derivatives of amines are the best classes for studying the effect of analyte structures on the chiral resolution. The effect of analyte structures on the chiral resolution may be obtained from the work of Hyun et al. [47,48]. The authors studied the chiral resolution of amino alcohols, amides, amino esters, and amino carbonyls. The effects of the substituents on the chiral resolution of some racemic compounds are shown in Table 6. A perusal of this table indicates the dominant effect of steric interactions on chiral resolution. Furthermore, an improved resolution of the racemic compounds, having phenyl moieties as the substituents, may be observed from this Table 6. ft may be the result of the presence of n—n interactions between the CCE and racemates. Generally, the resolution decreases with the addition of bulky groups, which may be caused by the steric effects. In addition, some anions have been used as the mobile phase additives for the improvement of the chiral resolution of amino acids [76]. Recently, Machida et al. [69] reported the use of some mobile phase additives for the improvement of chiral resolution. They observed an improvement in the chiral resolution of some hydrophobic amino compound using cyclodextrins and cations as mobile phase additives. [Pg.307]

A-Sulfonylaldimines undergo Mannich-type addition to silyl enol ethers of ketones, giving /)-amino carbonyl derivatives in up to 93% ee in the presence of a chiral ferrocene bearing S- and P-substituents complexed to copper(II).29... [Pg.6]

Aminoalkenes, oxidative cyclization, 10, 710-711 Aminoalkoxides, on zinc compounds, 2, 371 a-Aminoalkylallenes, cycloisomerizations, 10, 720 a-Aminoalkylcuprates, preparation, 9, 519-520 -Aminoalkylidynes, diiron carbonyl complexes with cyclopentadienyl ligands, 6, 248 Aminoalkynes, hydroamination, 10, 717 a-Aminoallenes, activation by gold, 9, 574 Amino r]5-amides, in Ru and Os half-sandwich rf3-arenes,... [Pg.54]

X-ray crystallography amino(l-alkynyl) carbenes, 170 chalcogen-bridged metal-carbonyl complexes, 244-248, 250-253, 255-256, 258-264, 266-272, 274-279, 281, 283-284, 287, 289, 292-293, 295-310 cobalt-alkyne complexes, 76-77, 82-83, 89-90, 94-96... [Pg.321]

Cyclic and acyclic enol derivatives 480 can be asymmetrically aziridinated with (A -tosylimino)iodobenzene 481 using a chiral copper catalyst prepared in situ from [Cu(MeCN)4]PF6 and the optically active ligand 479. Collapse of the aminal (i.e., 482) leads to the formation of enantiomerically enriched Q-amino carbonyl compounds 483, although ee s to date are modest <2000EJ0557>. Similarly, dienes can be selectively aziridinated using the chiral Mn-salen complex 484 to give vinyl aziridines 486 in scalemic form (Scheme 124) <2000TL7089>. [Pg.55]

In penicillins of the type (370) the position a to the carbonyl in the four-membered ring bears a hydrogen and a nitrogen substituent. This requires that unsubstituted amino carbene complexes of the type (369) be readily available and was the driving force for the development of the procedure for the prep-... [Pg.1107]

Carbonyl complexes with terminal amino groups are well established but not numerous because of the tendency of nitrogen to use its lone-pair electrons to bond to a second metal atom. [Pg.117]


See other pages where Amino-carbonyl complex is mentioned: [Pg.509]    [Pg.509]    [Pg.127]    [Pg.204]    [Pg.109]    [Pg.320]    [Pg.66]    [Pg.344]    [Pg.212]    [Pg.364]    [Pg.114]    [Pg.140]    [Pg.310]    [Pg.427]    [Pg.435]    [Pg.311]    [Pg.105]    [Pg.359]    [Pg.89]    [Pg.9]    [Pg.3734]    [Pg.5792]    [Pg.57]    [Pg.1080]    [Pg.89]    [Pg.208]    [Pg.46]    [Pg.23]    [Pg.114]    [Pg.140]    [Pg.160]   
See also in sourсe #XX -- [ Pg.509 ]




SEARCH



Amino complex

© 2024 chempedia.info