Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alcohols hydroxyl-directed

The synthesis of the trisubstituted cyclohexane sector 160 commences with the preparation of optically active (/ )-2-cyclohexen-l-ol (199) (see Scheme 49). To accomplish this objective, the decision was made to utilize the powerful catalytic asymmetric reduction process developed by Corey and his colleagues at Harvard.83 Treatment of 2-bromocyclohexenone (196) with BH3 SMe2 in the presence of 5 mol % of oxazaborolidine 197 provides enantiomeri-cally enriched allylic alcohol 198 (99% yield, 96% ee). Reductive cleavage of the C-Br bond in 198 with lithium metal in terf-butyl alcohol and THF then provides optically active (/ )-2-cyclo-hexen-l-ol (199). When the latter substance is treated with wCPBA, a hydroxyl-directed Henbest epoxidation84 takes place to give an epoxy alcohol which can subsequently be protected in the form of a benzyl ether (see 175) under standard conditions. [Pg.616]

Ishikawa s endgame toward of 54 is shown in Scheme 3.12. First, the allylic alcohol function was oxidized by a substrate-directed dihydroxylation reaction, as developed by Donohoue and coworkers (66 % yield) [36]. This reaction is conducted using 1 equiv each of osmium tetroxide and tetramethylethylene diamine (TMEDA) and provides a method to obtain the syn-A i hydroxylation product in the... [Pg.52]

Photocyclization of benzophenone with chiral allylic alcohols, 9 (R = Me, Et, Pri, and Bu1) is hydroxyl group-directed to give regioselectivity and t/zreo-diastereoselectivity in the formation of mainly 10 <00JA2958>. [Pg.72]

An interesting variant involves the use of an allylic alcohol as the alkene component. In this process, re-oxidation of the catalyst is unnecessary since the cyclization occurs with /Uoxygen elimination of the incipient cr-Pd species to effect an SN2 type of ring closure. Both five- and six-membered oxacycles have been prepared in this fashion using enol, hemiacetal, and aliphatic alcohol nucleophiles.439,440 With a chiral allylic alcohol substrate, the initial 7r-complexation may be directed by the hydroxyl group,441 as demonstrated by the diastereoselective cyclization used in the synthesis of (—)-laulimalide (Equation (120)).442 Note that the oxypalladation takes place with syn-selectivity, in analogy with the cyclization of phenol nucleophiles (1vide supra). [Pg.682]

Allylic alcohols are interesting substrates for epoxidation because they produce epoxides with a hydroxyl group as additional functional group that is able to play an important role in the subsequent synthesis of complex molecules [105]. This synthesis aspect certainly benefits from the hydroxy-group directed selectivity of oxygen delivery. [Pg.305]

In the epoxidation of acyclic allylic alcohols (Scheme 6), the diastereoselectivity depends significantly on the substitution pattern of the substrate. The control of the threo selectivity is subject to the hydroxyl-group directivity, in which conformational preference on account of the steric interactions and the hydrogen bonding between the dioxirane oxygen atoms and the hydroxy functionality of the allylic substrate steer the favored 7r-facial... [Pg.1144]

Cyclization of allylic alcohols to form epoxides has been particularly problematical, and the reactions have been more of mechanistic than of synthetic interest. For reactions conducted under basic conditions, it is possible that epoxide formation involves initial halogen addition followed by nucleophilic displacement to form the epoxide. Early examples of direct formation of epoxides from allylic alcohols with sodium hypobromite," bromine and 1.5 M NaOH,12 and r-butyl hypochlorite13 have been reviewed previously.fr Recently it has been shown that allylic alcohols can be cyclized effectively with bis(jym-collidine)iodine(I) perchlorate (equation 3).14 An unusual example of epoxide formation competing with other cyclization types is shown in equation (4).15 In this case, an allylic benzyl ether competes effectively with a -/-hydroxyl group as the nucleophile. [Pg.367]

Enantiopure allylic alcohols are employed widely as building blocks for asymmetric synthesis, and particularly as substrates for various diasteroselective allcene functionalization reactions such as cyclopropanation and epoxidation directed by the hydroxyl group [129]. [Pg.299]

You saw at the end of the last chapter that the reactions of m-CPBA can be directed by hydroxyl groups, and the same thing happens in the reactions of acyclic alkenes. This allylic alcohol epoxidizes to give a 95 5 ratio of diastereoisomers. [Pg.897]


See other pages where Allylic alcohols hydroxyl-directed is mentioned: [Pg.1306]    [Pg.105]    [Pg.105]    [Pg.119]    [Pg.436]    [Pg.480]    [Pg.481]    [Pg.666]    [Pg.223]    [Pg.13]    [Pg.87]    [Pg.702]    [Pg.653]    [Pg.19]    [Pg.215]    [Pg.234]    [Pg.233]    [Pg.543]    [Pg.110]    [Pg.256]    [Pg.878]    [Pg.69]    [Pg.346]    [Pg.410]    [Pg.416]    [Pg.391]    [Pg.346]    [Pg.410]    [Pg.416]    [Pg.315]    [Pg.347]    [Pg.802]    [Pg.307]    [Pg.296]    [Pg.260]    [Pg.298]    [Pg.14]    [Pg.78]    [Pg.653]    [Pg.59]    [Pg.17]   
See also in sourсe #XX -- [ Pg.173 , Pg.174 , Pg.175 ]




SEARCH



Alcoholic hydroxyl

Allylic hydroxylation

Directivity hydroxyl

© 2024 chempedia.info