Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloy films solid-solution

Numerous ternary systems are known for II-VI structures incorporating elements from other groups of the Periodic Table. One example is the Zn-Fe-S system Zn(II) and Fe(II) may substimte each other in chalcogenide structures as both are divalent and have similar radii. The cubic polymorphs of ZnS and FeS have almost identical lattice constant a = 5.3 A) and form solid solutions in the entire range of composition. The optical band gap of these alloys varies (rather anomalously) within the limits of the ZnS (3.6 eV) and FeS (0.95 eV) values. The properties of Zn Fei-xS are well suited for thin film heterojunction-based solar cells as well as for photoluminescent and electroluminescent devices. [Pg.47]

We prepared thin film Pt alloy electrodes by Ar-sputtering Pt and the second metal targets simultaneously onto a disk substrate at room temperature (thickness approximately 200 nm). The resulting alloy composition was determined by gravimetry and X-ray fluorescent analysis (EDX). Grazing incidence (i7= 1°) X-ray diffraction patterns of these alloys indicated the formation of a solid solution with a face-centered cubic (fee) crystal stmeture. [Pg.318]

Amorphous NiP alloys with > 10% P (generally obtained by deposition from acidic electrolytes) are non-magnetic (see [66] and references therein), as required of the underlayer for thin-film media. Although the structure of these alloys is generally assumed to be a solid solution of P in Ni, a recent report [67] has suggested that NiP with 7.4-10% P deposited from acid sulfate electrolytes is better represented by a microcrystalline structure composed of 4-5 nm fee NiP solid-solution grains. [Pg.258]

It was assumed that the nickel crystallites are rapidly enveloped in a skin of a copper-rich alloy, from which diffusion towards the center of each crystallite then takes place. If xx and x2 are the atomic fractions of copper in the two equilibrium phases and x is the atomic fraction of copper in the alloy film under consideration, then the crystallites in the annealed film may have a variety of forms. Solid solutions occur at either end of the composition range but the values of Xi and x2 at 200°C are <0.1 and 0.8. Hence, over much of the composition range (i.e., where x lies between X and xi), the Cu-Ni films should consist of crystallites with a kernel which is almost pure nickel (composition xi) enveloped in a skin of a copper-rich alloy (composition x2). Eventually, when x is only slightly larger than Xi, the alloy skin does not completely surround the nickel crystallites small patches of alloy (x2) and almost pure nickel ( ci) are both exposed. [Pg.123]

Hence, the decision to use a heated substrate with simultaneous evaporation of the component metals as an aid to homogenization requires consideration of whether or not it might have an adverse effect, i.e., causing preferential nucleation of one component, which interdiffusion may not be able to remedy. It was believed (60) that in preparing Pd-Rh alloys by simultaneous deposition on a substrate at 400°C, rhodium nucleated preferentially and that crystallites grew by the addition of palladium (and rhodium) atoms. The diffusion of palladium atoms into this kernel formed a phase with 88 =t 5% Rh (phase II). The outer shell of the crystallite, phase I, was in effect a solid solution deficient in rhodium compared with the overall film composition, and the Rh content of phase I therefore increased as the Rh flux was increased. [Pg.132]

Gold forms a continuous series of solid solutions with palladium, and there is no evidence for the existence of a miscibility gap. Also, the catalytic properties of the component metals are very different, and for these reasons the Pd-Au alloys have been popular in studies of the electronic factor in catalysis. The well-known paper by Couper and Eley (127) remains the most clearly defined example of a correlation between catalytic activity and the filling of d-band vacancies. The apparent activation energy for the ortho-parahydrogen conversion over Pd-Au wires wras constant on Pd and the Pd-rich alloys, but increased abruptly at 60% Au, at which composition d-band vacancies were considered to be just filled. Subsequently, Eley, with various collaborators, has studied a number of other reactions over the same alloy wires, e.g., formic acid decomposition 128), CO oxidation 129), and N20 decomposition ISO). These results, and the extent to which they support the d-band theory, have been reviewed by Eley (1). We shall confine our attention here to the chemisorption of oxygen and the decomposition of formic acid, winch have been studied on Pd-Au alloy films. [Pg.158]

The production of corrosion-resistant materials hy alloying is well established, hut the mechanisms are noi lull) understood. It is known, of course, that elements like chromium, mckcl. titanium, and aluminum depend for their corrosion resistance upon a tenacious surface oxide layer (passive film). Alloying elements added for the purpose of passivation must be in solid solution. The potential of ion implantation is promising because restrictions deriving from equilibrium phase diagrams frequently do not applv li e., concentrations of elements beyond tile limits of equilibrium solid solubility might he incorporated). This can lead to heretofore unknown alloyed surfact-s which are very corrosion resistant... [Pg.865]

During the growth of solid solutions (e. g., pseudobinary alloys and doped compounds), the melt composition at the interface can be a function of time, a situation that results in a natural composition gradient in the growth direction. Heteroepitaxy, the growth of an epitaxial film with a composition different from that of the substrate, is more difficult compared with other... [Pg.116]

Laser Raman spectroscopy has played a major role in the study of electrochemical systems (see Section 3.4). The technique provides molecular-specific information on the structure of the solid-solution interfaces in situ and is particularly suited for spectroelectrochemical studies of corrosion and surface film formation. Metals such as Pb, Ag, Fe, Ni, Co, Cu, Cr, Ti, Au and Sn, stainless steel and other alloys in various solutions have been studied by the technique. [Pg.332]

Other anodic reactions are also of interest when there is formation of an insoluble product. Sulfide films were used (30, 31) in the case of Cu and Cu-Zn alloys. These methods can serve for the determination of the relative orientation of the grains in a polycrystalline pure metal or homogeneous solid solutions. In the case of pure metals, the color of the surface film depends on the orientation of the grains. In the case of solid solutions, their composition affects the rate of oxidation and, therefore, the color of the films. It is possible in fills way to detect composition heterogeneities in a solid solution. [Pg.247]

The alloy catalysts used in these early studies were low surface area materials, commonly metal powders or films. The surface areas, for example, were two orders of magnitude lower than that of platinum in a commercial reforming catalyst. Hence these alloys were not of interest as practical catalysts. The systems emphasized in these studies were combinations of metallic elements that formed continuous series of solid solutions, such as nickel-copper and palladium-gold. The use of such systems presumably made it possible to vary the electronic structure of a metal crystal in a known and convenient manner, and thereby to determine its influence on catalytic activity. Bimetallic combinations of elements exhibiting limited miscibility in the bulk were not of interest. Aspects of bimetallic catalysts other than questions related to the influence of bulk electronic structure received little attention in these studies. [Pg.2]

The Cr-depletion theory has been accepted as the mechanism by which a sensitized stainless steel becomes susceptible to intergranular corrosion [60]. Recall that a minimum of 10 to 13wt.% Gr in solid solution is required to form protective passive films on Fe-Ni-Gr alloys... [Pg.367]


See other pages where Alloy films solid-solution is mentioned: [Pg.17]    [Pg.139]    [Pg.194]    [Pg.279]    [Pg.221]    [Pg.117]    [Pg.121]    [Pg.131]    [Pg.133]    [Pg.139]    [Pg.142]    [Pg.157]    [Pg.167]    [Pg.173]    [Pg.178]    [Pg.338]    [Pg.209]    [Pg.290]    [Pg.47]    [Pg.297]    [Pg.384]    [Pg.302]    [Pg.194]    [Pg.145]    [Pg.128]    [Pg.6035]    [Pg.114]    [Pg.852]    [Pg.887]    [Pg.343]    [Pg.397]    [Pg.394]    [Pg.6034]    [Pg.215]    [Pg.235]    [Pg.122]    [Pg.346]    [Pg.53]    [Pg.864]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Alloy films

Alloys solid solution

Alloys solution

© 2024 chempedia.info