Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes sigmatropic rearrangement

The di-TT-methane rearrangement of 1,4-pentadiene has been modeled using CAS-SCF/4-31G calculations. The results indicate that a singlet 1,3-diradical is the key intermediate. This species can be reached from the excited state via a Cl that involves vinyl migration. It consists of a vinyl group associated with the central carbon of an allylic system and is similar in structure to the Cl involved in alkene sigmatropic rearrangements (see p. 1093). The structure of the Cl is also consistent with the... [Pg.1113]

Selenium dioxide is a useful reagent for allylic oxidation of alkenes. The products can include enones, allylic alcohols, or allylic esters, depending on the reaction conditions. The mechanism consists of three essential steps (a) an electrophilic ene reaction with Se02, (b) a [2,3]-sigmatropic rearrangement that restores the original location of the double bond, and (c) solvolysis of the resulting selenium ester.183... [Pg.1124]

Aminophenols from anilines, 35, 2 Anhydrides of aliphatic dibasic acids, Friedel-Crafts reaction with, 5, 5 Anion-assisted sigmatropic rearrangements, 43, 2 Anthracene homologs, synthesis of, 1, 6 Anti-Markownikoff hydration of alkenes, 13, 1... [Pg.585]

The reactions of 1,2,3-triazolium 1-imide (277) with a range of alkene and alkyne dipolarophiles give rise to a variety of new ring systems (Scheme 54). Compounds (276) and (278) are obtained from (277) by reaction with acrylonitrile and DMAD, respectively. These reactions are tandem 1,3-dipolar (endo) cycloadditions and sigmatropic rearrangements which are regio- and stereospecific <90JCS(Pl)2537>. Kinetic and mechanistic studies show that these reactions are dipole-HOMO controlled. The second-order rate constants are insensitive to solvent polarity, the reaction indicates... [Pg.55]

The [2,3]- or [3,3]-sigmatropic rearrangements (Scheme 24) provide a means to introduce either the protected amine or the carbon atom which will become the carboxylic acid, while also positioning the double bond in the correct position for the alkene isosteres. Moreover, when starting from homochiral allyl alcohols, a very effective chirality transfer assures the stereospecific construction of the R1 and R2 side-chain stereochemistries. [Pg.355]

Among the first reported synthetic methods for alkene isosteres, a sigmatropic rearrangement of oxidatively activated allylic selenides to provide Boc-protected allylic amines was used for the synthesis of the D,L-Tyn i[is, CH=CH]Gly isostereJ711 The method resulted in a racemic dipeptide isostere, and only a Gly residue at the C-terminus is possible. It is no longer competitive compared with more recent methods using rearrangement of allylic tri-chloroacetimidates. [Pg.358]

Although it has been established that the HOMO (diazoalkane)-LUMO (alkene) controlled concerted cycloaddition occurs without intervention of any intermediate for the reactions of simple diazoalkanes with alkenes, Huisgen once proposed a mechanistic alternative 4 namely an initial hypothetical nitrene-type 1,1-cycloaddition reaction of phenyldiazomethane to styrene followed by a vinylcyclopropane-cy-clopentene-type 1,3-sigmatropic rearrangement Control experiments, however, excluded this hypothesis for the bimolecular 1,3-dipolar cycloaddition reaction of diazomethane (Scheme 60).204... [Pg.1103]

All-carbon ene reactions can go in reverse when ring-strain is released 6.24. This reaction is curious, because it could also be considered as a homologue of a [1,53-sigmatropic rearrangement—it is quite common to think of the chemistry of cyclopropanes as similar to that of alkenes. With heteroatoms in the chain it is possible to drive such reactions in reverse without having to release strain. Thus esters such as acetates and benzoates undergo a cyclic (3-elimination on pyrolysis. This type of elimination is known to be syn... [Pg.86]

Allylic metals, in propargylic alcohol alkylation, 11, 129 ir-Allylic palladium complexes, and carbocyclization, 11, 426 Allylic position, alkenes, dienes, polyenes, metallation, 9, 6 Allylic selenides, [2,3]sigmatropic rearrangement, 9, 481 Allylic substitution reactions for C-N bonds via amination... [Pg.51]

Experimental and computational approaches to elucidating mechanistic details in pericyclic rearrangements have been reviewed,1 as have preparations of alkenes by rearrangement reactions.2 The formation of saturated carbon atoms with no attached heteroatoms by sigmatropic or electrocyclic rearrangement reactions has been reviewed.3... [Pg.399]

We have expanded our collection of stereoselective reactions even more in the making of alkenes by the Wittig reaction (chapter 15), from acetylenes (chapter 16), by thermodynamic control in enone synthesis (chapters 18 and 19) and in sigmatropic rearrangements (chapter 35). We have seen that such E- or Z-alkenes can be transformed into three-dimensional stereochemistry by the Diels-Alder reaction (chapter 17), by electrophilic addition (chapters 23 and 30), by carbene insertion (chapter 30) and by cycloadditions to make four-membered rings (chapters 32 and 33). [Pg.289]

The intramolecular nitrone-alkene cycloaddition reaction of monocyclic 2-azetidinone-tethered alkenyl(alkynyl) aldehydes 211, 214, and 216 with Ar-aIkylhydroxylamincs has been developed as an efficient route to prepare carbacepham derivatives 212, 215, and 217, respectively (Scheme 40). Bridged cycloadducts 212 were further transformed into l-amino-3-hydroxy carbacephams 213 by treatment with Zn in aqueous acetic acid at 75 °C. The aziridine carbaldehyde 217 may arise from thermal sigmatropic rearrangement. However, formation of compound 215 should be explained as the result of a formal reverse-Cope elimination reaction of the intermediate ct-hydroxy-hydroxylamine C1999TL5391, 2000TL1647, 2005EJ01680>. [Pg.155]

A tandem one-pot elimination-intramolecular Diels-Alder reaction occurs when the mesylate of 4-homoallylic azetidinone having a orc-alkene or alkyne substituent is heated in a sealed tube in the presence of an equimolecular quantity of l,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The method has been used to produce derivatives of oxace-pham. In a similar way, the 3,4-disubstituted azetidinone mesylate 473 afforded an 88% yield of 474. The method can be further elaborated through the introduction of a novel [3,3]-sigmatropic rearrangement of a-allenic mesylates thus, 475 yielded 476 on thermolysis C1999TL1015, 2000JOC3310, 2005EJ098>. [Pg.302]

The Evans rearrangement can be driven to completion by the addition of a thiophile, such as trimethylphosphite (Scheme 26.19) 440 46 M This strategy allows the chemistry of the allyl phenyl sulfoxide, or other sulfur precursor, to be exploited before the allyl alcohol is unmasked.4 3 471 474 The addition of phenylsulfenyl chloride to an alkene, followed by the elimination of hydrogen chloride and subsequent rearrangement, provides a useful synthesis of allyl alcohols.473 475 The [2,3]-Evans sigmatropic rearrangement is concerted and allows for stereochemical transfer.476 477 The reverse reaction, formation of the allyl sulfoxide, results from the treatment of an allyl alcohol using a base followed by arylsulfenyl chloride to produce the allyl sulfoxide.478 479... [Pg.518]


See other pages where Alkenes sigmatropic rearrangement is mentioned: [Pg.194]    [Pg.199]    [Pg.151]    [Pg.359]    [Pg.1486]    [Pg.113]    [Pg.268]    [Pg.123]    [Pg.740]    [Pg.805]    [Pg.970]    [Pg.60]    [Pg.265]    [Pg.70]    [Pg.621]    [Pg.358]    [Pg.362]    [Pg.168]    [Pg.360]    [Pg.503]    [Pg.518]    [Pg.19]    [Pg.503]    [Pg.518]    [Pg.423]    [Pg.430]    [Pg.475]    [Pg.345]    [Pg.414]    [Pg.414]    [Pg.433]    [Pg.340]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 ]




SEARCH



Rearrangements alkenes

Sigmatropic -rearrangements rearrangement

© 2024 chempedia.info