Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkane isomerization mechanism

In this section we present experimental evidence for a bifunctional alkane isomerization mechanism obtained by selective poisoning of the acidic sites of Pd-NiSMM with pyridine, which was pulse-injected into the liquid hydrocarbon feed stream. The possibility of additional poisoning of the metallic sites was checked by studying the hydrogenation of benzene and the isomerization and ring opening of methylcyclopentane (MCP). [Pg.279]

In contrast to this mechanism, the one proposed in our work operates direct from the oxidation state of the alkane feedstock. The same alkyl cation intermediate can lead to both alkane isomerization (an alkyl cation is widely accepted as the reactive intermediate in these reactions) and we have shown in this paper that a mechanistically viable dehydrocyclization route is feasible starting with the identical cation. Furthermore, the relative calculated barrier for each of the above processes is in accord with the experimental finding of Davis, i.e. that isomerization of a pure alkane feedstock, n-octane, with a dual function catalyst (carbocation intermediate) leads to an equilibration with isooctanes at a faster rate than the dehydrocyclization reaction of these octane isomers (8). [Pg.307]

Mechanism. The proven acidity of the effective alkane isomerization catalysts suggests that carbocations are involved in acid-catalyzed alkane isomerization. Such a mechanism was first proposed by Schmerling and coworkers54 on the basis of the pioneering ideas of Whitmore55 for the skeletal isomerization of alkanes and cycloalkanes in the presence of aluminum chloride and a trace of olefin or other promoter. Subsequently these concepts were used to explain the mechanism of the acid-catalyzed isomerizations in general. [Pg.165]

HO-initiated oxidation of the alkanes become complex with increase in carbon number. Namely, a large variety of alkyl radicals can be produced by the H-atom abstraction from the primary, secondary and tertiary C—H bonds in the parent alkane [88]. The resulting ROO ( C4) radicals have been shown by Atkinson et al. to yield R0N02 as well as RO + N02 upon reaction with NO [100-102]. A major complication in the alkane oxidation mechanism arises from the variety of competitive reaction channels that RO radicals can undergo, e.g., 02-reaction, unimolecular dissociation and internal isomerization. There have been a number of experimental and theoretical studies of these reactions [31,88]. [Pg.102]

The early use of deuterium in place of hydrogen in the study of catalytic hydrogenation led to the recognition that the process was not simply the addition of H2 to the double bond. Horiuti and Polanyi proposed that both H2 and alkene (1) are bound to the catalyst surface and transformed to products by a sequence of elementary steps, which they represented as shown in Scheme 1, where an asterisk ( ) represents a vacant site on the catalyst.The last step, (d), is virtually irreversible under the usual hydrogenation conditions, but can be observed in the exchange reactions of D2 with alkanes. The mechanism accounts for the isomerization of an alkene if the reversal of step (c), which involves the formation of the alkyl intermediate (3), involves the abstraction of a hydrogen atom other than the one first added, and is coupled with the desorption of the alkene, (2) - (1). At present, the bond between the alkene and the metal often is represented as a ir-complex (4), as in equation (7). ... [Pg.420]

Since 1-5 ring closure provides a route for the skeletal isomerization of alkanes, isomerization of substituted benzenes by a cyclic mechanism should also be possible. That was verified by Shephard and Rooney (95), who found that, on 0.5% Pt/Al2O3, interconversion of o-ethyltoluene and n-propyl-benzene accompanied dehydrocyclization to indane (Scheme 80). In these... [Pg.66]

Nevertheless, the metal-catalyzed isomerization reaction is of interest from the point of view of understanding the nature of hydrocarbon transformations on metal surfaces. It has been suggested that carbonium-ion-like intermediates are involved in alkane isomerization reactions on platinum (23), and a specific mechanism has been proposed by Anderson and Avery (24). [Pg.137]

However, reaction mechanism smdies revealed that the mechanism ofw-alkane isomerization is a very complex one, presenting steps that are certainly not acid-catalyzed and where butene is likely an intermediate [278]. This means that the good performances of such catalysts can be due to other features besides (super)acidity. In particular, hydrogenation-dehydrogenation properties could be beneficial. [Pg.297]

Hence, the rate depends only on the ratio of the partial pressures of hydrogen and n-pentane. Support for the mechanism is provided by the fact that the rate of n-pentene isomerization on a platinum-free catalyst is very similar to that of the above reaction. The essence of the bifunctional mechanism is that the metal converts alkanes into alkenes and vice versa, enabling isomerization via the carbenium ion mechanism which allows a lower temperature than reactions involving a carbo-nium-ion formation step from an alkane. [Pg.367]

The rearrangement of platinacyclobutanes to alkene complexes or ylide complexes is shown to involve an initial 1,3-hydride shift (a-elimina-tion), which may be preceded by skeletal isomerization. This isomerization can be used as a model for the bond shift mechanism of isomerization of alkanes by platinum metal, while the a-elimination also suggests a possible new mechanism for alkene polymerisation. New platinacyclobutanes with -CH2 0SC>2Me substituents undergo solvolysis with ring expansion to platinacyclopentane derivatives, the first examples of metallacyclobutane to metallacyclopentane ring expansion. The mechanism, which may also involve preliminary skeletal isomerization, has been elucidated by use of isotopic labelling and kinetic studies. [Pg.339]

Metallacyclobutanes have been proposed as intermediates in a number of catalytic reactions, and model studies with isolated transition metallacyclobutanes have played a large part in demonstrating the plausibility of the proposed mechanisms. Since the mechanisms of heterogeneously catalysed reactions are especially difficult to determine by direct study, model studies are particularly valuable. This article describes results which may be relevant to the mechanisms of isomerization of alkanes over metallic platinum by the bond shift process and of the oligomerization or polymerization of alkenes. [Pg.339]

The proposed mechanism of the bond shift isomerization of neopentane is shown in Scheme I Cl-3). There are now good models for each step in the proposed sequence, but no simple transition metal complex can accomplish all steps since there cannot be sufficient co-ordination sites. The first steps involve a,y-dinstallation of the alkane, for which there are good precedents in both platinum and iridium chemistry (4, 5, 6). The... [Pg.339]

Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved. Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved.
Several reaction pathways for the cracking reaction are discussed in the literature. The commonly accepted mechanisms involve carbocations as intermediates. Reactions probably occur in catalytic cracking are visualized in Figure 4.14 [17,18], In a first step, carbocations are formed by interaction with acid sites in the zeolite. Carbenium ions may form by interaction of a paraffin molecule with a Lewis acid site abstracting a hydride ion from the alkane molecule (1), while carbo-nium ions form by direct protonation of paraffin molecules on Bronsted acid sites (2). A carbonium ion then either may eliminate a H2 molecule (3) or it cracks, releases a short-chain alkane and remains as a carbenium ion (4). The carbenium ion then gets either deprotonated and released as an olefin (5,9) or it isomerizes via a hydride (6) or methyl shift (7) to form more stable isomers. A hydride transfer from a second alkane molecule may then result in a branched alkane chain (8). The... [Pg.111]

As previously mentioned, Davis (8) has shown that in model dehydrocyclization reactions with a dual function catalyst and an n-octane feedstock, isomerization of the hydrocarbon to 2-and 3-methylheptane is faster than the dehydrocyclization reaction. Although competitive isomerization of an alkane feedstock is commonly observed in model studies using monofunctional (Pt) catalysts, some of the alkanes produced can be rationalized as products of the hydrogenolysis of substituted cyclopentanes, which in turn can be formed on platinum surfaces via free radical-like mechanisms. However, the 2- and 3-methylheptane isomers (out of a total of 18 possible C8Hi8 isomers) observed with dual function catalysts are those expected from the rearrangement of n-octane via carbocation intermediates. Such acid-catalyzed isomerizations are widely acknowledged to occur via a protonated cyclopropane structure (25, 28), in this case one derived from the 2-octyl cation, which can then be the precursor... [Pg.302]


See other pages where Alkane isomerization mechanism is mentioned: [Pg.82]    [Pg.351]    [Pg.201]    [Pg.477]    [Pg.112]    [Pg.676]    [Pg.97]    [Pg.147]    [Pg.280]    [Pg.530]    [Pg.127]    [Pg.371]    [Pg.289]    [Pg.382]    [Pg.524]    [Pg.535]    [Pg.369]    [Pg.343]    [Pg.32]    [Pg.219]    [Pg.96]    [Pg.105]    [Pg.134]    [Pg.381]    [Pg.753]    [Pg.581]    [Pg.42]    [Pg.196]    [Pg.56]    [Pg.158]    [Pg.394]   


SEARCH



Alkane mechanism

Alkanes isomeric

Alkanes isomerism

Isomerism mechanism

Isomerization mechanism

Isomerization mechanism, bifunctional alkane

© 2024 chempedia.info