Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali crystal structures

Solid Mo is bright, with a silvery luster. Powder is light- to black-gray, depending on particle size. M.p. 2620°C d 10.23 hardness 5.5. Attacked (with difficulty) by nonoxidizing acids and aqueous alkalies. Crystal structure A 2 type. [Pg.1402]

Formula weight 74.94. di 6.47. Heat of formation —57.5 kcal./mole. Olive-green powder takes upOs from air at room temperature. Becomes brown, and finally black, as the oxj n content increases. Stable in air when calcined at a high temperature. Converts to C03O4 on heating in air at 390-900°C. Readily soluble in HCl, HsSO and HNO3. Fine CoO powder is also soluble in cone, alkali. Crystal structure B1 (NaCl) type. [Pg.1520]

Gray-black crystalline powder d 4.269. Liberates S when heated in absence of air. Not attacked by nonoxidizing acids or alkalies. Crystal structure C2 type. [Pg.1524]

Among the alkali metals, Li, Na, K, Rb, and Cs and their alloys have been used as exohedral dopants for Cgo [25, 26], with one electron typically transferred per alkali metal dopant. Although the metal atom diffusion rates appear to be considerably lower, some success has also been achieved with the intercalation of alkaline earth dopants, such as Ca, Sr, and Ba [27, 28, 29], where two electrons per metal atom M are transferred to the Cgo molecules for low concentrations of metal atoms, and less than two electrons per alkaline earth ion for high metal atom concentrations. Since the alkaline earth ions are smaller than the corresponding alkali metals in the same row of the periodic table, the crystal structures formed with alkaline earth doping are often different from those for the alkali metal dopants. Except for the alkali metal and alkaline earth intercalation compounds, few intercalation compounds have been investigated for their physical properties. [Pg.38]

Fig. 2. Structures for the solid (a) fee Cco, (b) fee MCco, (c) fee M2C60 (d) fee MsCeo, (e) hypothetical bee Ceo, (0 bet M4C60, and two structures for MeCeo (g) bee MeCeo for (M= K, Rb, Cs), and (h) fee MeCeo which is appropriate for M = Na, using the notation of Ref [42]. The notation fee, bee, and bet refer, respectively, to face centered cubic, body centered cubic, and body centered tetragonal structures. The large spheres denote Ceo molecules and the small spheres denote alkali metal ions. For fee M3C60, which has four Ceo molecules per cubic unit cell, the M atoms can either be on octahedral or tetrahedral symmetry sites. Undoped solid Ceo also exhibits the fee crystal structure, but in this case all tetrahedral and octahedral sites are unoccupied. For (g) bcc MeCeo all the M atoms are on distorted tetrahedral sites. For (f) bet M4Ceo, the dopant is also found on distorted tetrahedral sites. For (c) pertaining to small alkali metal ions such as Na, only the tetrahedral sites are occupied. For (h) we see that four Na ions can occupy an octahedral site of this fee lattice. Fig. 2. Structures for the solid (a) fee Cco, (b) fee MCco, (c) fee M2C60 (d) fee MsCeo, (e) hypothetical bee Ceo, (0 bet M4C60, and two structures for MeCeo (g) bee MeCeo for (M= K, Rb, Cs), and (h) fee MeCeo which is appropriate for M = Na, using the notation of Ref [42]. The notation fee, bee, and bet refer, respectively, to face centered cubic, body centered cubic, and body centered tetragonal structures. The large spheres denote Ceo molecules and the small spheres denote alkali metal ions. For fee M3C60, which has four Ceo molecules per cubic unit cell, the M atoms can either be on octahedral or tetrahedral symmetry sites. Undoped solid Ceo also exhibits the fee crystal structure, but in this case all tetrahedral and octahedral sites are unoccupied. For (g) bcc MeCeo all the M atoms are on distorted tetrahedral sites. For (f) bet M4Ceo, the dopant is also found on distorted tetrahedral sites. For (c) pertaining to small alkali metal ions such as Na, only the tetrahedral sites are occupied. For (h) we see that four Na ions can occupy an octahedral site of this fee lattice.
Fig. 10. Unpolarized Raman spectra (T = 300 K) for solid Ceo, KaCeo, RbsCeo, NaeCeo, KaCco, RbeCeo and CseCeo [92, 93], The tangential and radial modes of Ag symmetry are identified, as are the features associated with the Si substrates. From the insensitivity of these spectra to crystal structure and specific alkali metal dopant, it is concluded that the interactions between the Cao molecules are weak, as are also the interactions between the Cao anions and the alkali metal cations. Fig. 10. Unpolarized Raman spectra (T = 300 K) for solid Ceo, KaCeo, RbsCeo, NaeCeo, KaCco, RbeCeo and CseCeo [92, 93], The tangential and radial modes of Ag symmetry are identified, as are the features associated with the Si substrates. From the insensitivity of these spectra to crystal structure and specific alkali metal dopant, it is concluded that the interactions between the Cao molecules are weak, as are also the interactions between the Cao anions and the alkali metal cations.
Compounds of the same stoichiometry type usually have the same type crystal structure within the row of alkali metals K - Rb - Cs rarely the same type structure with sodium-containing analogues and never ciystallize similarly with lithium-containing compounds. The crystal structure analysis of different fluoride and oxyfluoride compounds clearly indicates that the steric similarity between all cations and tantalum or niobium must be taken into account when calculating the X Me ratio. [Pg.118]

The saline hydrides are white, high-melting-point solids with crystal structures that resemble those of the corresponding halides. The alkali metal hydrides, for instance, have the rock-salt structure (Fig. 5.39). [Pg.704]

In closely related studies, the molecular and crystal structures of lithium, sodium and potassium N,N -di(p-tolyl)formamidinate and N,N -di(2,6-dialkyl-phenyl)formamidinate complexes have been elucidated. These showed the anions to be versatile ligands for alkali metals, exhibiting a wide variety of binding modes. ... [Pg.196]

Figure 9.2 is schematic diagram of the crystal structure of most of the alkali halides, letting the black circles represent the positive metal ions (Li, Na, K, Rb, and Cs), and the gray circles represent the negative halide ions (F, Cl, Br, and I).The ions lie on two interpenetrating face-centered-cubic lattices. Of the 20 alkali halides, 17 have the NaCl crystal structure of Figure 9.1. The other three (CsCl, CsBr, and Csl) have the cesium chloride structure where the ions lie on two interpenetrating body-centered-cubic lattices (Figure 9.3). The plastic deformation on the primary glide planes for the two structures is quite different. Figure 9.2 is schematic diagram of the crystal structure of most of the alkali halides, letting the black circles represent the positive metal ions (Li, Na, K, Rb, and Cs), and the gray circles represent the negative halide ions (F, Cl, Br, and I).The ions lie on two interpenetrating face-centered-cubic lattices. Of the 20 alkali halides, 17 have the NaCl crystal structure of Figure 9.1. The other three (CsCl, CsBr, and Csl) have the cesium chloride structure where the ions lie on two interpenetrating body-centered-cubic lattices (Figure 9.3). The plastic deformation on the primary glide planes for the two structures is quite different.
Figure 11.6 Views of perovskite crystal structure. Top—conventional cubic unit cell white circles = oxygen black circle = transition metal gray circles = alkali or alkaline earth metal. Bottom—extended unit cell to show the cage formed by the oxygen octa-hedra. Adapted from Bragg et al. (1965). Figure 11.6 Views of perovskite crystal structure. Top—conventional cubic unit cell white circles = oxygen black circle = transition metal gray circles = alkali or alkaline earth metal. Bottom—extended unit cell to show the cage formed by the oxygen octa-hedra. Adapted from Bragg et al. (1965).
The hemispherands, spherands, calixarenes, and related derivatives. A number of hosts for which the pre-organization criterion is half met (the hemispherands) (Cram et al., 1982) or fully met (the spherands) (Cram, Kaneda, Helgeson Lein, 1979) have been synthesized. An example of each of these is given by (251) and (252), respectively. In (251), the three methoxyl groups are conformationally constrained whereas the remaining ether donors are not fixed but can either point in or out of the ring. This system binds well to alkali metal ions such as sodium and potassium as well as to alkylammonium ions. The crystal structure of the 1 1 adduct with the f-butyl ammonium cation indicates that two linear +N-H - 0... [Pg.154]


See other pages where Alkali crystal structures is mentioned: [Pg.610]    [Pg.588]    [Pg.589]    [Pg.589]    [Pg.600]    [Pg.44]    [Pg.412]    [Pg.59]    [Pg.776]    [Pg.901]    [Pg.131]    [Pg.78]    [Pg.65]    [Pg.108]    [Pg.108]    [Pg.206]    [Pg.129]    [Pg.48]    [Pg.70]    [Pg.94]    [Pg.611]    [Pg.1090]    [Pg.1174]    [Pg.1266]    [Pg.114]    [Pg.34]    [Pg.29]    [Pg.53]    [Pg.199]    [Pg.34]    [Pg.35]    [Pg.43]    [Pg.44]    [Pg.56]    [Pg.129]    [Pg.358]   
See also in sourсe #XX -- [ Pg.2 , Pg.25 ]




SEARCH



Alkali halide crystals structure

Alkali metal alloys crystal structures

Alkali metals (Group crystal structures

Alkali metals crystal structure

© 2024 chempedia.info