Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols, secondary, conversion into with chromic acid

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

An excellent method for the conversion of ether-soluble secondary alcohols to the corresponding ketones is by chromic acid oxidation in a two-phase ether-water system. The reaction is carried out at 25-30 °C with the stoichiometric quantity of chromic acid calculated on the basis of the above equation, and is exemplified by the preparation of octan-2-one and cyclohexanone (Expt 5.86). The success of this procedure is evidently due to the rapid formation of the chromate ester of the alcohol, which is then extracted into the aqueous phase, followed by formation of the ketone which is then extracted back into the ether phase and is thus protected from undesirable side reactions. [Pg.607]

The main applications of oxidation with chromium trioxide are transformations of primary alcohols into aldehydes [184, 537, 538, 543, 570, 571, 572, 573] or, rarely, into carboxylic acids [184, 574], and of secondary alcohols into ketones [406, 536, 542, 543, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584]. Jones reagent is especially successful for such oxidations. It is prepared by diluting with water a solution of 267 g of chromium trioxide in a mixture of 230 mL of concentrated sulfuric acid and 400 mL of water to 1 L to form an 8 N CrOj solution [565, 572, 579, 581, 585, 556]. Other oxidations with chromic oxide include the cleavage of carbon-carbon bonds to give carbonyl compounds or carboxylic acids [482, 566, 567, 569, 580, 587, 555], the conversion of sulfides into sulfoxides [541] and sulfones [559], and the transformation of alkyl silyl ethers into ketones or carboxylic acids [590]. [Pg.22]


See other pages where Alcohols, secondary, conversion into with chromic acid is mentioned: [Pg.389]    [Pg.434]    [Pg.6]    [Pg.1564]    [Pg.729]    [Pg.730]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Alcohols conversion

Alcohols secondary alcohol

Chromic

Chromic Acid

Chromicity

Conversion, secondary

© 2024 chempedia.info