Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption and Phase Behavior

Pressure-area isotherms for many polymer films lack the well-defined phase regions shown in Fig. IV-16 such films give the appearance of being rather amorphous and plastic in nature. At low pressures, non-ideal-gas behavior is approached as seen in Fig. XV-1 for polyfmethyl acrylate) (PMA). The limiting slope is given by a viiial equation [Pg.537]

A great many polymers appear to form films having a flat molecular configuration. Thus various polyesters [7] gave extrapolated areas of about 2.5 m /mg corresponding to about the calculated 60-70 area per segment, or mono-layer Sickness of 3-5 A. A similar behavior was noted for poly(vinyl acetate) [Pg.539]

Gaines [13] has reported on dimethylsiloxane-containing block copolymers. Interestingly, if the organic block would not in itself spread, the area of the block polymer was simply proportional to the siloxane content, indicating that the organic blocks did not occupy any surface area. If the organic block was separately spreadable, then it contributed, but nonadditively, to the surface area of the block copolymer. [Pg.541]

Mixtures of polymers at surfaces provide the interesting possibility of exploring polymer miscibility in two dimensions. Baglioni and co-workers [17] have shown that polymers having the same orientation at the interface are compatible while those having different orientations are not. Some polymers have their hydrophobic portions parallel to the surface, while others have a perpendicular disposition. The surface orientation effect is also present in mixtures of poly(methyl methacrylate), PMMA, and fatty acids. [Pg.541]


See other pages where Adsorption and Phase Behavior is mentioned: [Pg.537]   


SEARCH



Phase behavior

© 2024 chempedia.info