Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesion promoters interphase region

The performance of a product where adhesion plays a role is determined both by its adhesive and cohesive properties. In the case of silicones, the promotion of adhesion and cohesion follows different mechanisms [37]. In this context, adhesion promotion deals with the bonding of a silicone phase to the substrate and reinforcement of the interphase region formed at the silicone-substrate interphase. The thickness and clear definition of this interphase is not well known, and in fact depends on many parameters including the surface physico-chemistry of... [Pg.688]

The mechanism of chemical adhesion is probably best studied and demonstrated by the use of silanes as adhesion promoters. However, it must be emphasized that the formation of chemical bonds may not be the sole mechanism leading to adhesion. Details of the chemical bonding theory along with other more complex theories that particularly apply to silanes have been reviewed [48,63]. These are the Deformable Layer Hypothesis where the interfacial region allows stress relaxation to occur, the Restrained Layer Hypothesis in which an interphase of intermediate modulus is required for stress transfer, the Reversible Hydrolytic Bonding mechanism which combines the chemical bonding concept with stress relaxation through reversible hydrolysis and condensation reactions. [Pg.696]

The primer chosen for this investigation consisted of an equimolar mixture of phenyl- and amino-functional silanes, suggested as a potential superior primer for aluminum/epoxy adhesive joints [7], The amino-functional silane is known to be effective as an adhesion promoter for fiber-reinforced composite materials [1, 2] as well as for epoxy/metal adhesive joints [8, 9] and provides for strong chemical interaction between the adhesive and primer, while the phenyl functional silane should reduce the overall concentration of polar, hydrophilic functional groups in the interphase region and at the same time maintain or improve the ability of the resin and primer to interpenetrate due to its structural similarity to the adhesive resin. [Pg.494]

Three primary mechanisms have been suggested for enhanced adhesion via silane coupling agents.5 The classical explanation is that the functional group on the silane molecule reacts with the adhesive resin. Another possibility is that the polysiloxane surface layer has an open porous structure. The liquid adhesive penetrates the porosity and then hardens to form an interpenetrating interphase region. The third mechanism applies only to polymeric adherends. It is possible that the solvent used to dilute and apply the silane adhesion promoter opens the molecular structure on the substrate surface, allowing the silane to penetrate and diffuse into the adherend. [Pg.188]

ToF-SIMS chemical imaging (often in conjunction with iXPS) also plays a role in the analysis of the interphase region of fully fabricated glass fibre composites, particularly interaction of silane based adhesion promoters with the resin matrix. ToF-SIMS is profitably used in the packaging industry (adhesives) and food industry (contamination of contents by the packaging). The technique allows examining phase-separation of blends in the surface [822]. [Pg.571]


See other pages where Adhesion promoters interphase region is mentioned: [Pg.404]    [Pg.114]    [Pg.220]    [Pg.295]    [Pg.494]    [Pg.404]    [Pg.358]    [Pg.559]    [Pg.373]    [Pg.122]    [Pg.424]   
See also in sourсe #XX -- [ Pg.557 ]

See also in sourсe #XX -- [ Pg.371 ]




SEARCH



ADHESION PROMOTION

Adhesion promote

Adhesion promoters

Adhesive promoter

Interphase

Interphase adhesion

Interphase region

Interphases

Interphases, adhesion

Promoter 35 region

© 2024 chempedia.info