Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition/coupling reactions hydroamination

The formation of C—N bonds is an important transformation in organic synthesis, as the amine functionality is found in numerous natural products and plays a key role in many biologically active compounds [1]. Standard catalytic methods to produce C—N bonds involve functional group manipulations, such as reductive amination of carbonyl compounds [2], addition of nucleophiles to imines [3], hydrogenation of enamides [4—8], hydroamination of olefins [9] or a C—N coupling reaction [10, 11]. Recently, the direct and selective introduction of a nitrogen atom into a C—H bond via a metal nitrene intermediate has appeared as an attractive alternative approach for the formation of C—N bonds [12-24]. [Pg.137]

Enantioselective vanadium and niobium catalysts provide chemists with new and powerful tools for the efficient preparation of optically active molecules. Over the past few decades, the use of vanadium and niobium catalysts has been extended to a variety of different and complementaiy asymmetric reactions. These reactions include cyanide additions, oxidative coupling of 2-naphthols, Friedel-Crafts-type reactions, pinacol couplings, Diels-Alder reactions, Mannich-type reactions, desymmetrisation of epoxides and aziridines, hydroaminations, hydroaminoalkylations, sulfoxida-tions, epoxidations, and oxidation of a-hydroxy carbo) lates Thus, their major applications are in Lewis acid-based chemistiy and redox chemistry. In particular, vanadium is attractive as a metal catalyst in organic synthesis because of its natural abundance as well as its relatively low toxicity and moisture sensitivity compared with other metals. The fact that vanadium is present in nature in equal abundance to zinc (albeit in a more widely distributed form and more difficult to access) is not widely appreciated. Inspired by the activation of substrates in nature [e.g. bromoperoxidase. [Pg.216]

Stereochemical and kinetic analyses of the Brpnsted acid-catalysed intramolecular hydroamination/deuterioamination of the electronically non-activated cyclic alkene (13) with a neighbouring sulfonamide nucleophile have been found to proceed as an anh-addition (>90%) across the C=C bond to produce (15). No loss of the label was observed by and NMR (nuclear magnetic resonance) spectroscopies and mass spectrometry (MS). The reaction follows the second-order kinetic law rate = 2 [TfOH] [13] with the activation parameters being = 9.1 0.5 kcal moP and = -35 5 cal moP An inverse a-secondary kinetic isotope effect of d/ h = (1-15 0.03), observed for (13) deuteration at C(2), indicates a partial CN bond formation in the transition state (14). The results are consistent with a mechanism involving concerted, intermolecular proton transfer from an N-protonated sulfonamide to the alkenyl C(3) position coupled with an intramolecular anti-addition by the sulfonamide group. ... [Pg.376]

In recent years, synthesis of pyrroles has drawn the attention of chemists. Traditional methods used for pyrrole synthesis include the Hantzsch reaction [45] and the Paal-Knorr condensation reaction [46,47], The latter is the most widely used method, which involves the cyclocondensation reaction of 1,4-dicarbonyl compounds with primary amines to produce substituted pyrroles. In addition, there are several methods such as 1,3-dipolar cydoaddition reaction, aza-Wittig reaction, reductive coupling, and titanium-catalyzed hydroamination of diynes. Scheme 1 shows several catalysts used in this type of reaction [44]. [Pg.576]


See other pages where Addition/coupling reactions hydroamination is mentioned: [Pg.119]    [Pg.499]    [Pg.507]    [Pg.20]    [Pg.315]    [Pg.317]    [Pg.115]    [Pg.211]    [Pg.188]    [Pg.372]    [Pg.147]    [Pg.204]    [Pg.234]    [Pg.49]    [Pg.196]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Addition/coupling reactions

Hydroamination

Hydroaminations

© 2024 chempedia.info