Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition and condensation reactions

Primary and secondary nitroalkanes, and substrates containing terminal em-dinitroaliphatic functionality, have one or more acidic a-protons, a consequence of inductive and resonance effects imposed by the nitro group. As a result, such compounds can behave like carbanions and participate in a number of addition and condensation reactions which are typical of substrates like ketones, aldehydes, and /S-ketoesters. Such reactions are extremely useful for the synthesis of functionalized polynitroaliphatic compounds which find potential use as explosives, energetic oligomers and plasticizers. [Pg.33]

2-Fluoro-2,2-dinitroethanol, the methylol derivative of fluorodinitromethane, has been used extensively for the synthesis of fluorodinitromethyl compounds. The fluorine atom is similar in size to that of a proton and so rotation in the fluorodinitromethyl group is much less hindered compared to the trinitromethyl group. Consequently, these compounds are far less sensitive to impact than trinitromethyl compounds but only slightly less energetic. The explosive performance of fluorodinitromethyl compounds has been reviewed.  [Pg.33]


According to the information available, it would be reasonable to consider that P. stipticus emits light when its natural luciferin is oxidized with molecular oxygen in the presence of OJ and a suitable surfactant (Shimomura et al., 1993b). Also, it seems almost certain that the natural luciferin is formed from PS-A, PS-B and a simple primary amine by the addition and condensation reactions. [Pg.289]

The general mechanistic features of the aldol addition and condensation reactions of aldehydes and ketones were discussed in Section 7.7 of Part A, where these general mechanisms can be reviewed. That mechanistic discussion pertains to reactions occurring in hydroxylic solvents and under thermodynamic control. These conditions are useful for the preparation of aldehyde dimers (aldols) and certain a,(3-unsaturated aldehydes and ketones. For example, the mixed condensation of aromatic aldehydes with aliphatic aldehydes and ketones is often done under these conditions. The conjugation in the (3-aryl enones provides a driving force for the elimination step. [Pg.64]

These ketones were utilized in various addition and condensation reactions (78). The expected pyridines and pyrimidines were easily formed, while hydrazine failed to give the corresponding pyrazoles. [Pg.144]


See other pages where Addition and condensation reactions is mentioned: [Pg.94]    [Pg.64]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.113]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.33]    [Pg.33]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]   


SEARCH



Addition, Condensation and Substitution Reactions of Carbonyl Compounds

Aldol Addition and Condensation Reactions

© 2024 chempedia.info