Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation parameters alkene epoxidation

As stoich. [Ru(0)(bpy)(tmtacn)]VCH3CN it functioned as a competent (sic) epoxidant for alkenes, though the products were often contaminated with by-products (e.g. fran -stilbene gave fran -stilbene oxide and benzaldehyde cw-stilbene gave cis- and trans- epoxides). Kinetics of the epoxidation of norbomene and styrene were reported, with activation parameters measured and discussed [682]. Kinetics of its non-stereospecific, stoicheiometric epoxidation of aromatic alkenes in CH3CN were studied, and the rates compared with those of oxidations effected by other Ru(IV) 0x0 complexes with N-donors, e. g. [Ru(0)(tmeda)(tpy)] ", trans-[Ru(0)(Cl3bpy)(tpy)] " and [Ru(0)Cl(bpy)(ppz )] + [676]. [Pg.75]

The rates of epoxidation of cyclododecene with a series of aliphatic peroxy-acids have been correlated, using the Taft equation. The reaction constant (p ) was + 2.0 and the steric constant (6) was found to be essentially zero. A two-parameter correlation has been found for the effect of basicity and polarity of the solvent on the rate of epoxidation of propene with peracetic acid. Rate constants and activation parameters for the epoxidation of a number of cycloalkenes, including (11 R = H or COOMe), (12 R = H, Ph, or 2-furyl), (13), (14), and cyclo-octa-l,5-diene, have been measured. An isokinetic relationship was demonstrated, with the isokinetic temperature of 3 C. There was only a weak dependence of the rate on the structure of the alkene. [Pg.5]

Yawalkar et al. (2001) has developed a model for a three-phase reactor based on the use of a dense polymeric composite membrane containing discrete cubic zeolite particles (Fig. 4.5) for the epoxidation reaction of alkene. Catalytic particles of the same size are assumed vdth a cubic shape and uniformly dispersed across the polymer membrane cross-section. Effects of various parameters, such as peroxide and alkene concentration in liquid phase, sorption coefficient of the membrane for peroxide and alkene, membrane-catalyst distribution coefficient for peroxide and alkene and catalyst loading, have been studied. The results have been discussed in terms of a peroxide effidency defined as the ratio of flux of peroxide through the membrane utilized for alkene oxidation to the total flux of organic peroxide through the membrane. The paper aimed to show that, by using an organophilic dense membrane and the catalysts confined in the polymeric matrix, the oxidant concentration (in that reaction peroxides) can be controlled on the active site with an improvement of the peroxide efficiency and selectivity to desired products. [Pg.169]


See other pages where Activation parameters alkene epoxidation is mentioned: [Pg.380]    [Pg.491]    [Pg.207]    [Pg.213]    [Pg.80]    [Pg.107]    [Pg.109]    [Pg.352]    [Pg.339]    [Pg.2]    [Pg.123]   
See also in sourсe #XX -- [ Pg.38 , Pg.40 , Pg.41 , Pg.43 ]




SEARCH



Activated alkenes

Activation parameters

Activity parameters

Alkene epoxidations

Alkenes epoxidation

Alkenes, activation

Epoxidation activation

Epoxidation activity

Epoxides alkene epoxidation

© 2024 chempedia.info