Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation energy species

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

Like tert butyloxonium ion tert butyl cation is an intermediate along the reaction pathway It is however a relatively unstable species and its formation by dissociation of the alkyloxonium ion is endothermic Step 2 is the slowest step m the mechanism and has the highest activation energy Figure 4 8 shows a potential energy diagram for this step... [Pg.156]

The overall requirement is 1.0—2.0 s for low energy waste compared to typical design standards of 2.0 s for RCRA ha2ardous waste units. The most important, ie, rate limiting steps are droplet evaporation and chemical reaction. The calculated time requirements for these steps are only approximations and subject to error. For example, formation of a skin on the evaporating droplet may inhibit evaporation compared to the theory, whereas secondary atomization may accelerate it. Errors in estimates of the activation energy can significantly alter the chemical reaction rate constant, and the pre-exponential factor from equation 36 is only approximate. Also, interactions with free-radical species may accelerate the rate of chemical reaction over that estimated solely as a result of thermal excitation therefore, measurements of the time requirements are desirable. [Pg.56]

Activated diffusion of the adsorbate is of interest in many cases. As the size of the diffusing molecule approaches that of the zeohte channels, the interaction energy becomes increasingly important. If the aperture is small relative to the molecular size, then the repulsive interaction is dominant and the diffusing species needs a specific activation energy to pass through the aperture. Similar shape-selective effects are shown in both catalysis and ion exchange, two important appHcations of these materials (21). [Pg.447]

This reaction is catalyzed by iron, and extensive research, including surface science experiments, has led to an understanding of many of the details (72). The adsorption of H2 on iron is fast, and the adsorption of N2 is slow and characterized by a substantial activation energy. N2 and H2 are both dis so datively adsorbed. Adsorption of N2 leads to reconstmction of the iron surface and formation of stmctures called iron nitrides that have depths of several atomic layers with compositions of approximately Fe N. There is a bulk compound Fe N, but it is thermodynamically unstable when the surface stmcture is stable. Adsorbed species such as the intermediates NH and NH2 have been identified spectroscopically. [Pg.176]

The most complete discussion of the electrophilic substitution in pyrazole, which experimentally always takes place at the 4-position in both the neutral pyrazole and the cation (Section 4.04.2.1.1), is to be found in (70JCS(B)1692). The results reported in Table 2 show that for (29), (30) and (31) both tt- and total (tt cr)-electron densities predict electrophilic substitution at the 4-position, with the exception of an older publication that should be considered no further (60AJC49). More elaborate models, within the CNDO approximation, have been used by Burton and Finar (70JCS(B)1692) to study the electrophilic substitution in (29) and (31). Considering the substrate plus the properties of the attacking species (H", Cl" ), they predict the correct orientation only for perpendicular attack on a planar site. For the neutral molecule (the cation is symmetrical) the second most reactive position towards H" and Cl" is the 5-position. The activation energies (kJmoF ) relative to the 4-position are H ", C-3, 28.3 C-5, 7.13 Cr, C-3, 34.4 C-5, 16.9. [Pg.173]


See other pages where Activation energy species is mentioned: [Pg.14]    [Pg.703]    [Pg.2398]    [Pg.2698]    [Pg.2724]    [Pg.2975]    [Pg.644]    [Pg.155]    [Pg.475]    [Pg.515]    [Pg.503]    [Pg.507]    [Pg.513]    [Pg.356]    [Pg.529]    [Pg.480]    [Pg.50]    [Pg.287]    [Pg.321]    [Pg.53]    [Pg.63]    [Pg.73]    [Pg.156]    [Pg.317]    [Pg.106]    [Pg.167]    [Pg.178]    [Pg.222]    [Pg.228]    [Pg.317]    [Pg.376]    [Pg.416]    [Pg.225]    [Pg.196]    [Pg.628]    [Pg.670]    [Pg.70]    [Pg.21]    [Pg.21]    [Pg.326]    [Pg.561]    [Pg.225]    [Pg.57]    [Pg.967]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Activated species

Activation energy blooded species

Activation energy with excited species

Active species

Active specy

© 2024 chempedia.info