Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylenic sulfoxides, oxidation

The induced diastereoselectivity is determined by the chiral sulfinyl moiety of the substrate and not by the menthyl chirality, since a similar but opposed d.r. is obtained in sulfoxide 1 (and ee in the oxidized allenylsulfone 2) when the (-)-menthyl (S/ )-sulfinate is used rather than the ( — )-menthyl (SS)-sulfinate. The induced diastereoselectivity is fair to good, as deduced from the optical purity of the sulfones 2, however, inadvertent resolution of the diastereomers during the chromatographic separation of the allenic and acetylenic sulfoxides may have affected the figures. [Pg.557]

Dimethyl sulfoxide reacts with trifluoroacetic anhydride at low tempera ture to give a complex that is an efficient reagent for the oxidation of alcohols to carbonyl compounds [40 41] This reagent can be used to oxidize primary and secondary aliphatic alcohols, cycloalkyl alcohols, and allylic, homoallylic, ben-zylic, acetylenic, and steroidal alcohols (equation 19)... [Pg.948]

C ( propyl) N phenylmtrone to N phenylmaleimide, 46, 96 semicarbazide hydrochloride to ami noacetone hydiochlonde, 46,1 tetraphenylcyclopentadienone to diphenyl acetylene, 46, 44 Alcohols, synthesis of equatorial, 47, 19 Aldehydes, aromatic, synthesis of, 47, 1 /3-chloro a,0 unsaturated, from ke tones and dimethylformamide-phosphorus oxy chloride, 46, 20 from alky 1 halides, 47, 97 from oxidation of alcohols with dimethyl sulfoxide, dicyclohexyl carbodumide, and pyndimum tnfluoroacetate, 47, 27 Alkylation, of 2 carbomethoxycyclo pentanone with benzyl chloride 45,7... [Pg.120]

Pericas and Jeong demonstrated independently that sulfur-tethered substrates, when subjected to the PKR conditions, afforded the desired bicyclic products. The sulfur tether is removed cleanly by Pummerer reaction after oxidation of sulfur to sulfoxide or 1,4-addition of bisalkyl cuprate followed by hydrogenolysis of sulfide with Raney nickel. It is worth mentioning that the regioselectivity regarding the acetylene part is opposite to that of the intermolecular version (Equation (30)). [Pg.354]

These results indicate that the sulfinyl group seems to be much more efficient in the control of the stereoselectivity of 1,3-dipolar cycloadditions (endo or exo adducts are exclusively obtained in de> 80%) than in Diels-Alder processes (mixtures of all four possible adducts were formed). Additionally, complete control of the regioselectivity of the reaction was observed. Despite these clearly excellent results, the following paper concerning asymmetric cycloaddition of cyclic nitrones and optically pure vinyl sulfoxides was reported nine years later [154]. (Meanwhile, only one paper [155], related to the synthesis of /1-nicotyri-nes, described the use of reaction of nitrones with racemic vinyl sulfoxides, but these substrates were merely used as a masked equivalent of acetylene dipolaro-phile). In 1991, Koizumi et al. described the reaction of one of the best dipolarophiles, the sulfinyl maleimide 109, with 3,4,5,6-tetrahydropyridine 1-oxide 194 [154]. It proceeded in CH2C12 at -78 °C to afford a 60 20 10 6 mixture of four products in ca. 90 % yield (Scheme 92). [Pg.98]

The hydroboration of acetylenes (3) with diisopinocampheylborane (IpC)2BH in THF led after refunctionalisation and transesterification to the olefins (4a, b, c) isolated in good yields. Monooxidation with mCpBA led to the sulfoxide (4d) whereas the sulfone (4e) was obtained with two equivalents of mCpBA. The same sulfone (4e) could also be obtained in an excellent overall yield by radical addition of phenylsulfonyl iodide to the pinacol ester of vinylboronic acid followed by a dehydroiodination in the presence of Et2N (87 % overall yield). The carboxylic ester (4a) could be transformed into the corresponding carboxylic acid (4f) (79 % yield) 11 which led to the acid chloride (4g) by treatment with freshly distilled thionyl chloride at 0°C (91 % yield), p-keto vinylboronates are easily accessible by oxidation of the corresponding protected allylic alcohol according to the following scheme ... [Pg.465]

Air, the cheapest oxidant, is used only rarely without irradiation and without catalysts. Examples of oxidations by air alone are the conversion of aldehydes into carboxylic acids (autoxidation) and the oxidation of acyl-oins to a-diketones. Usually, exposure to light, irradiation with ultraviolet light, or catalysts are needed. Under such circumstances, dehydrogenative coupling in benzylic positions takes place at very mild conditions [7]. In the presence of catalysts, terminal acetylenes are coupled to give diacetylenes [2], and anthracene is oxidized to anthraquinone [3]. Alcohols are converted into aldehydes or ketones with limited amounts of air [4, 5, 6, 7], Air oxidizes esters to keto esters [3], thiols to disulfides [9], and sulfoxides to sulfones [10. In the presence of mercuric bromide and under irradiation, methylene groups in allylic and benzylic positions are oxidized to carbonyls [11]. [Pg.1]

Oxidations by oxygen and catalysts are used for the conversion of alkanes into alcohols, ketones, or acids [54]-, for the epoxidation of alkenes [43, for the formation of alkenyl hydroperoxides [22] for the conversion of terminal alkenes into methyl ketones [60, 65] for the coupling of terminal acetylenes [2, 59, 66] for the oxidation of aromatic compounds to quinones [3] or carboxylic acids [65] for the dehydrogenation of alcohols to aldehydes [4, 55, 56] or ketones [56, 57, 62, 70] for the conversion of alcohols [56, 69], aldehydes [5, 6, 63], and ketones [52, 67] into carboxylic acids and for the oxidation of primary amines to nitriles [64], of thiols to disulfides [9] or sulfonic acids [53], of sulfoxides to sulfones [70], and of alkyl dichloroboranes to alkyl hydroperoxides [57]. [Pg.4]

The applications of ruthenium tetroxide range from the common types of oxidations, such as those of alkenes, alcohols, and aldehydes to carboxylic acids [701, 774, 939, 940] of secondary alcohols to ketones [701, 940, 941] of aldehydes to acids (in poor yields) [940] of aromatic hydrocarbons to quinones [942, 943] or acids [701, 774, 941] and of sulfides to sulfoxides and sulfones [942], to specific ones like the oxidation of acetylenes to vicinal dicarbonyl compounds [9JS], of ethers to esters [940], of cyclic imines to lactams [944], and of lactams to imides [940]. [Pg.38]

Dimethyl sulfoxide (DMSO), (CH3)2SO, is a versatile reagent for the oxidation of alcohols to carbonyl compounds under gentle conditions. In addition to the previously mentioned dehydrogenations, it is capable of other oxidations acetylenes to a-diketones [997], alkyl halides to aldehydes 998, 999], tosyl esters to aldehydes [1000], methylene groups adjacent to carbonyl groups to carbonyls [1001, 1002], a-halocarbonyl compounds to u-dicarbonyl compounds [1003,1004,1005], aldehydes to acids [1006], and phosphine sulfides and selenides to phosphine oxides [1007]. [Pg.43]

Dehydrohalogenation Benzyltrimethylammonium mcsitoate. r-Butylamine. Calcium carbonate. j Uidine. Diazabicyclo[3.4.0]nonene-5. N.N-Dimethylaniline (see also Ethoxy-acetylene, preparation). N,N-Dimelhylformamide. Dimethyl sulfoxide-Potassium r-but-oxide. Dimethyl sulfoxide-Sodium bicarbonate. 2,4-Dinitrophenylhydrazine. Ethoxy-carbonylhydrazine. Ethyldicyclohexylamine. Ethyidiisopropylamine. Ion-exchange resins. Lithium. Lithium carbonate. Lithium carbonate-Lithium bromide. Lithium chloride. Methanolic KOH (see DimethylTormamide). N-PhenylmorphoKne. Potassium amide. Potassium r-butoxide. Pyridine. Quinoline. Rhodium-Alumina. Silver oxide. Sodium acetate-Acetonitrile (see Tetrachlorocyclopentadienone, preparation). Sodium amide. Sodium 2-butylcyclohexoxide. Sodium ethoxide (see l-Ethoxybutene-l-yne-3, preparation). Sodium hydride. Sodium iodide in 1,2-dimethoxyethane (see Tetrachlorocyclopentadienone, alternative preparation) Tetraethylammonium chloride. Tri-n-butylamine. Triethylamine. Tri-methyiamine (see Boron trichloride). Trimethyl phosphite. [Pg.657]

The only example in which a dihydrothiazine oxide is formed in a direct manner from an acyclic precursor involves the ammonia-induced cyclization of the acetylene 214 to the sulfoxide 215. Although both isomers of the... [Pg.347]


See other pages where Acetylenic sulfoxides, oxidation is mentioned: [Pg.123]    [Pg.175]    [Pg.276]    [Pg.278]    [Pg.278]    [Pg.750]    [Pg.162]    [Pg.65]    [Pg.551]    [Pg.200]    [Pg.487]    [Pg.99]    [Pg.118]    [Pg.6]    [Pg.89]    [Pg.283]    [Pg.4319]    [Pg.383]    [Pg.1000]    [Pg.1081]    [Pg.189]    [Pg.293]    [Pg.31]    [Pg.453]    [Pg.93]    [Pg.409]    [Pg.835]    [Pg.948]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Acetylene oxidation

Sulfoxide oxidation

Sulfoxides oxidation

© 2024 chempedia.info