Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption spectra molecule studies

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

When an ionic solution contains neutral molecules, their presence may be inferred from the osmotic and thermodynamic properties of the solution. In addition there are two important effects that disclose the presence of neutral molecules (1) in many cases the absorption spectrum for visible or ultraviolet light is different for a neutral molecule in solution and for the ions into which it dissociates (2) historically, it has been mainly the electrical conductivity of solutions that has been studied to elucidate the relation between weak and strong electrolytes. For each ionic solution the conductivity problem may be stated as follows in this solution is it true that at any moment every ion responds to the applied field as a free ion, or must we say that a certain fraction of the solute fails to respond to the field as free ions, either because it consists of neutral undissociated molecules, or for some other reason ... [Pg.38]

There are two important drawbacks of such an approach (1) a polarity scale based on a particular class of probes, in principle, does not account, for example, sizes of probes, which should strongly effect the interactions (2) betain dyes do not fluoresce, which restrict essentially the field of application of this approach, because in many cases, absorption spectrum could not be measured accurately (small volumes of samples, study of cells, and single molecules spectroscopy). Therefore, polarity-sensitive fluorescent dyes offer distinct advantage in many applications. [Pg.208]

The effect of crystal field splitting is easily seen by studying the absorption spectrum of [Ti(H20)6]3+ because the Ti3+ ion has a single electron in the 3d orbitals. In the octahedral field produced by the six water molecules, the 3d orbitals are split in energy as shown in Figure 17.3. The only transition possible is promotion of the electron from an orbital in the t2g set to one in the eg set. This transition... [Pg.619]

Anion solvation has been studied by observing the shift in the absorption spectrum of the benzophenone anion in various solvents and as a function of temperature. The benzo-phenone anion was formed from the reaction of the benzophenone molecule and a precursor to the solvated electron. Approximately 0.25 M benzophenone is put into the solution so that all the presolvated electrons will react with the benzophenone and virtually none will form the solvated electron. This process occurs much more quickly than the solvation processes that are observed [14,20]. [Pg.165]

The observation of a bent Cr-H-Cr bond in the tetraethylammonium salt without an accompanying substantial deformation of the linear architecture of the nonhydrogen atoms in the [Cr2(CO)io(M2-H)] monoanion reflects the inherent flexibility of the bond. The deformability of the[M2(CO)io(M2-H)] monoanion species to adopt an appreciably bent, staggered carbonyl structure was first reported by Bau and co-workers (23) from neutron diffraction studies of two crystalline modifications of the electronically equivalent, neutral W2(CO)9(NO)(m2-H) molecule. Subsequent x-ray diffraction studies (15) of the analogous [W2(CO)io(m2-H)] monoanion found that the nonhydrogen backbone can have either an appreciably bent structure for the bis(triphenylphosphine)-iminium salt or a linear structure for the tetraethylammonium salt, with the W-W separation 0.11 A less in the bent form. Crystal packing forces probably were responsible (15) for the different molecular configurations of the monoanion in the two lattices. In solution, however, all known salts of the [W2(CO)io(m2-H)] monoanion exhibit the same three-band carbonyl ir absorption spectrum char-... [Pg.27]


See other pages where Absorption spectra molecule studies is mentioned: [Pg.2859]    [Pg.517]    [Pg.525]    [Pg.14]    [Pg.77]    [Pg.139]    [Pg.12]    [Pg.8]    [Pg.257]    [Pg.73]    [Pg.109]    [Pg.456]    [Pg.23]    [Pg.137]    [Pg.153]    [Pg.227]    [Pg.625]    [Pg.633]    [Pg.200]    [Pg.22]    [Pg.67]    [Pg.63]    [Pg.140]    [Pg.148]    [Pg.149]    [Pg.31]    [Pg.155]    [Pg.125]    [Pg.132]    [Pg.400]    [Pg.35]    [Pg.430]    [Pg.129]    [Pg.136]    [Pg.24]    [Pg.19]    [Pg.223]    [Pg.474]    [Pg.364]    [Pg.364]    [Pg.86]    [Pg.181]    [Pg.469]    [Pg.166]    [Pg.174]   
See also in sourсe #XX -- [ Pg.500 ]




SEARCH



Absorption studies

Molecules absorption spectra

Molecules spectra

© 2024 chempedia.info