Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Abelian theory, molecular systems, Yang-Mills fields

Hamiltonian equations, 627-628 perturbative handling, 641-646 II electronic states, 631-633 vibronic coupling, 630-631 ABC bond angle, Renner-Teller effect, triatomic molecules, 611-615 ABCD bond angle, Renner-Teller effect, tetraatomic molecules, 626-628 perturbative handling, 641-646 II electronic states, 634-640 vibronic coupling, 630-631 Abelian theory, molecular systems, Yang-Mills fields ... [Pg.66]

Neumann boundary conditions, electronic states, adiabatic-to-diabatic transformation, two-state system, 304-309 Newton-Raphson equation, conical intersection location locations, 565 orthogonal coordinates, 567 Non-Abelian theory, molecular systems, Yang-Mills fields nuclear Lagrangean, 250 pure vs. tensorial gauge fields, 250-253 Non-adiabatic coupling ... [Pg.88]

In this chapter we discuss the close relationship between the Born-Oppenheimer treatment of molecular systems and field theory as applied to elementary particles. The theory is based on the Born-Oppenheimer non-adiabatic coupling terms which are known to behave as vector potentials in electromagnetic dynamics. Treating the time-dependent Schrodinger equation for the electrons and the nuclei we show that enforcing diabatization produces for non-Abelian time-dependent systems the four-component Curl equation as obtained by Yang and Mills (Phys. Rev. 95, 631 (1954)). [Pg.103]




SEARCH



Abelian

Abelian field theory

Abelian theory, molecular systems, Yang-Mills

Field systems

Molecular field theory

Molecular systems, Yang-Mills fields

System theory

Systemic theory

Yang-Mills field

Yang-Mills theory

© 2024 chempedia.info