Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wetting as a Capillary Action Phenomenon

For some types of wetting more than just the contact angle is involved in the basic mechanism of the action. This is true in the laying of dust and the wetting of a fabric since in these situations the liquid is required to penetrate between dust particles or between the fibers of the fabric. TTie phenomenon is related to that of capillary rise, where the driving force is the pressure difference across the curved surface of the meniscus. The relevant equation is then Eq. X-36, [Pg.469]

Capillary pressure gradients and Marongoni flow induce flow in porous media comprising glass beads or sand particles [40-42], Wetting and spreading processes are an important consideration in the development of inkjet inks and paper or transparency media [43] see the article by Marmur [44] for analysis of capillary penetration in this context. [Pg.470]

The Washburn equation has most recently been confirmed for water and cyclohexane in glass capillaries ranging from 0.3 to 400 fim in radii [46]. The contact angle formed by a moving meniscus may differ, however, from the static one [46, 47]. Good and Lin [48] found a difference in penetration rate between an outgassed capillary and one with a vapor adsorbed film, and they propose that the driving force be modified by a film pressure term. [Pg.470]

The Washburn model is consistent with recent studies by Rye and co-workers of liquid flow in V-shaped grooves [49] however, the experiments are unable to distinguish between this and more sophisticated models. Equation XIII-8 is also used in studies of wicking. Wicking is the measurement of the rate of capillary rise in a porous medium to determine the average pore radius [50], surface area [51] or contact angle [52]. [Pg.470]


See other pages where Wetting as a Capillary Action Phenomenon is mentioned: [Pg.469]   


SEARCH



A Wetting

Capillary action

Capillary phenomena

Wetting action

Wetting phenomena

© 2024 chempedia.info