Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weak saddle-focus

In the case where the Lyapunov value Lk is positive, the fixed point of the original map is a weak saddle-focus. Its stable and unstable manifolds are and respectively, as shown in Fig. 10.4.2. [Pg.129]

Formula (10.4.20) is similar to the formula (10.4.14) for the non-resonant case and the only difference is that in. the case of a weak resonance only a finite number of the Lyapunov values Li,..., Lp is defined (for example, only L is defined when N = b). If at least one of these Lyapunov values is non-zero, then Theorem 10.3 holds i.e. depending on the sign of the first non-zero Lyapunov value the fixed point is either a stable complex focus or an unstable complex focus (a complex saddle-focus in the multi-dimensional case). [Pg.131]

Let us examine next the bifurcations of the system (11.5.1) in the multidimensional case. If Li < 0 (Fig. 11.5.4), then when // < 0, the equilibrium state O is stable (rough focus when p < 0, and a weak focus aX p = 0) and it attracts all trajectories in a small neighborhood of the origin. When > 0 the point O becomes a saddle-focus with a two-dimensional unstable manifold and an m-dimensional stable manifold. The edge of the unstable manifold is the stable periodic orbit which now attracts all trajectories, except those in the stable manifold of O. One multiplier of the periodic orbit was calculated in Theorem 11.1, this is po p) = 1 — 47r /a (0) -h o p). To find the others we... [Pg.235]

We have seen in the previous sections that the qualitative behavior of a strongly resonant critical fixed point differs essentially from that of a non-resonant or a weakly resonant one. It is therefore natural to ask the question what happens at a strongly resonant point as the frequency varies In particular, in the case of the resonance a = 27t/3 the fixed point is a saddle with six separatrices in general, but when an arbitrarily small detuning is introduced the point becomes a weak focus (stable or unstable, depending on the sign of the first Lyapunov value). The question we seek to answer is how does the dynamics evolve before and after the critical moment ... [Pg.147]


See other pages where Weak saddle-focus is mentioned: [Pg.538]    [Pg.411]    [Pg.559]    [Pg.343]   
See also in sourсe #XX -- [ Pg.497 ]




SEARCH



Saddles

Weak focus

© 2024 chempedia.info