Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water solution

Such water solutions contain dissolved material. Depending on the nature and amount of the material, they usually accelerate the deterioration of some function or property of the paint. For example, dissolved compounds of iron rapidly deteriorate the decorative function of paint as mst stains form on the surface, spoiling its appearance. These stains are difficult or impossible to remove without damaging the paint film. [Pg.48]

Seawater contains large amounts of dissolved salts that accelerate water penetration of the paint film causing water to come in contact with the substrate. [Pg.48]


By saccharic acid is usually meant D-gluco-saccharic acid, m.p. 125-126°C, obtained by the oxidation of glucose or starch. This exists in water solution in equilibrium with its two y lactones, both of which can be obtained crystalline, though the acid itself does not crystallize readily. [Pg.350]

In these methods, the sulfur oxides produced during combustion are, before detection, either converted into sulfuric acid by bubbling in a hydrogen peroxide-water solution or converted into sulfates. [Pg.32]

It is preferable to use Tollen s ammoniacal silver nitrate reagent, which is prepared as follows Dissolve 3 g. of silver nitrate in 30 ml. of water (solution A) and 3 g. of sodium hydroxide in 30 ml. of water (solution B). When the reagent is requir, mix equal volumes (say, 1 ml.) of solutions A and JB in a clean test-tube, and add dilute ammonia solution drop by drop until the silver oxide is just dissolved. Great care must be taken in the preparation and use of this reagent, which must not be heated. Only a small volume should be prepared just before use, any residue washed down the sink with a large quantity of water, and the test-tubes rinsed with dilute nitric acid. [Pg.330]

Method 2. Place 0-2 g. of cupric acetate, 10 g. of ammonium nitrate, 21 2 g. of benzoin and 70 ml. of an 80 per cent, by volume acetic acid -water solution in a 250 ml. flask fitted with a reflux condenser. Heat the mixture with occasional shaking (1). When solution occurs, a vigorous evolution of nitrogen is observed. Reflux for 90 minutes, cool the solution, seed the solution with a crystal of benzil (2), and allow to stand for 1 hour. Filter at the pump and keep the mother liquor (3) wash well with water and dry (preferably in an oven at 60°). The resulting benzil has m.p. 94-95° and the m.p. is unaffected by recrystallisation from alcohol or from carbon tetrachloride (2 ml. per gram). Dilution of the mother liquor with the aqueous washings gives a further 1 Og. of benzil (4). [Pg.715]

Strike sees a point to this in Vogel s text Practical Organic Chemistry (3 ed.)[37]. In it, Vogel crystallizes his ketones using a saturated sodium bisulfite solution that a/so contains a little solvent. This is in contrast to the straight up aqueous (only water) solution that Strike described above. Here is A/hat Vogel said on page 342 ... [Pg.59]

Of course, there are a couple advantages to using HCI as the hy-drolyzer. Since using hydrochloric acid means that all that fat MDA or amphetamine is in the water solution, the chemist can vacuum filter the solution to get rid of all the tar and crap which will give a remarkably clean water solution. The X is released by basifying and extracting with solvent. [Pg.113]

This bathochromic shift is typical of 77 —> tt transitions. The behavior of the water solution when acidified was attributed by Albert (175) absorption by the thiazolium cation, by analogy with pyridine. However, allowance is made for the very weak basicity of thiazole (pK = 2.52) compared with that of pyridine (pK = 5.2), Ellis and Griffiths (176) consider the differences between the spectrum of thiazole in water and in... [Pg.47]

Glacial acetic acid is considered to be 99.50 wt % or higher. A different grade has a minimum concentration of 99.70 wt %. Specialty users require water solutions of 86% and 36%. Such grades are prepared on special order. Only minor quantities of these grades are marketed, and their use is vanishing. [Pg.70]

Sodium acetate reacts with carbon dioxide in aqueous solution to produce acetic anhydride and sodium bicarbonate (49). Under suitable conditions, the sodium bicarbonate precipitates and can be removed by centrifugal separation. Presumably, the cold water solution can be extracted with an organic solvent, eg, chloroform or ethyl acetate, to furnish acetic anhydride. The half-life of aqueous acetic anhydride at 19°C is said to be no more than 1 h (2) and some other data suggests a 6 min half-life at 20°C (50). The free energy of acetic anhydride hydrolysis is given as —65.7 kJ/mol (—15.7 kcal/mol) (51) in water. In wet chloroform, an extractant for anhydride, the free energy of hydrolysis is strangely much lower, —50.0 kJ/mol (—12.0 kcal/mol) (51). Half-life of anhydride in moist chloroform maybe as much as 120 min. Ethyl acetate, chloroform, isooctane, and / -octane may have promise for extraction of acetic anhydride. Benzene extracts acetic anhydride from acetic acid—water solutions (52). [Pg.78]

Acetic anhydride is a useful solvent in certain nitrations, acetylation of amines and organosulfur compounds for mbber processing, and in pesticides. Though acetic acid is unexceptional as a fungicide, small percentages of anhydride in acetic acid, or in cold water solutions are powerful fungicides and bactericides. There are no reports of this appHcation in commerce. It is possible that anhydride may replace formaldehyde for certain mycocidal apphcations. [Pg.79]

Diiodoacetic acid [598-89-0] (I2CHCOOH), mol wt 311.85, C2H2I2O2, mp 110°C, occurs as white needles and is soluble in water, ethyl alcohol, and ben2ene. It has been prepared by heating diiodomaleic acid with water (61) and by treating malonic acid with iodic acid in a boiling water solution (62). [Pg.90]

Micronutrients in Fluid Fertilizers. In terms of homogeneity and even distribution, fluid fertilizers are probably the best micronuttient carriers. Fluid carriers of micronutrients usually are nitrogen solutions, clear Hquid mixtures, or suspensions. Some micronutrients, however, are appHed as simple water solutions or suspensions. FoHar micronuttient sprays often contain only the micronuttient material in water solution. [Pg.243]

One of the principal problems in early commercialization of acryUc fibers was the lack of a suitable spinning method. The polymer caimot be melt spun, except possibly at high pressure in the presence of water. Solution spinning was the only feasible commercial route. However, hydrogen bonding between... [Pg.280]

Generalizations. Several generalizations can be made regarding taste (16,26). A substance must be in water solution, eg, the Hquid bathing the tongue (sahva), to have taste. Water solubiUty is the first requirement of the taste stimulus (12). The typical stimuli are concentrated aqueous solution in contrast with the Hpid-soluble substances which act as stimuli for olfaction (22). Many taste substances are hydrophilic, nonvolatile molecules (15). Taste detection thresholds for lipophilic molecules tend to be lower than those of their hydrophilic counterparts (16). [Pg.11]

Poly(ethylene oxide)s [25372-68-3] are made by condensation of ethylene oxide with a basic catalyst. In order to achieve a very high molecular weight, water and other compounds that can act as chain terminators must be rigorously excluded. Polymers up to a molecular weight of 8 million are available commercially in the form of dry powders (27). These must be dissolved carefliUy using similar techniques to those used for dry polyacrylamides. Poly(ethylene oxide)s precipitate from water solutions just below the boiling point (see Polyethers, ethylene oxide polymers). [Pg.33]

Fig. 6. Partial pressures over HF—water solutions where the numbers represent the quantity of HF in solution expressed as wt % (a) of HF and (b) of H2O... Fig. 6. Partial pressures over HF—water solutions where the numbers represent the quantity of HF in solution expressed as wt % (a) of HF and (b) of H2O...
Toxicity. Sodium fluoroacetate is one of the most effective all-purpose rodenticides known (18). It is highly toxic to all species of rats tested and can be used either in water solution or in bait preparations. Its absence of objectionable taste and odor and its delayed effects lead to its excellent acceptance by rodents. It is nonvolatile, chemically stable, and not toxic or irritating to the unbroken skin of workers. Rats do not appear to develop any significant tolerance to this compound from nonlethal doses. However, it is extremely dangerous to humans, to common household pets, and to farm animals, and should only be used by experienced personnel. The rodent carcasses should be collected and destroyed since they remain poisonous for a long period of time to any animal that eats them. [Pg.307]

Formaldehyde is produced and sold as water solutions containing variable amounts of methanol. These solutions are complex equiUbrium mixtures of methylene glycol, CH2(OH)2, poly(oxymethylene glycols), and hemiformals of these glycols. Ultraviolet spectroscopic studies (13—15) iadicate that even ia highly concentrated solutions the content of unhydrated HCHO is <0.04 wt%. [Pg.490]

In methanol—formaldehyde—water solutions, increasing the concentration of either methanol or formaldehyde reduces the volatility of the other. Vapor-hquid-equihbrium data (8,27) for several methanolic formaldehyde solutions ate given in Table 2. The flash point varies with composition, decreasing from 83 to 60°C as the formaldehyde and methanol concentrations increase (17,18). [Pg.491]

Larch gum is readily soluble in water. The viscosity of these solutions is lower than that of most other natural gums and solutions of over 40% soHds are easily prepared. These highly concentrated solutions are also unusual because of their Newtonian flow properties. Larch gum reduces the surface tension of water solutions and the interfacial tension existing in water and oil mixtures, and thus is an effective emulsifying agent. As a result of these properties, larch gum has been used in foods and can serve as a gum arabic substitute. [Pg.436]

Secondary coolants frequently are called brines because such fluids originally were mixtures of salts and water. Common refrigeration brines are water solutions of calcium chloride or sodium chloride. These brines must be inhibited against corrosion. [Pg.509]

High Water-Base Fluids. These water-base fluids have very high fire resistance because as Httle as 5% of the fluid is combustible. Water alone, however, lacks several important quaUties as a hydrauHc fluid. The viscosity is so low that it has Httle value as a sealing fluid water has Httle or no abiHty to prevent wear or reduce friction under boundary-lubrication conditions and water cannot prevent mst. These shortcomings can be alleviated in part by use of suitable additives. Several types of high water-based fluids commercially available are soluble oils, ie, od-in-water emulsions microemulsions tme water solutions, called synthetics and thickened microemulsions. These last have viscosity and performance characteristics similar to other types of hydrauHc fluids. [Pg.263]

Economic Jispects. Sodium borohydride is produced ia large quantities mainly as powder and stabilized water solution. Potassium borohydride powder is produced ia lesser amounts. Commercial quantities of sodium borohydride powder sell for ca 55/kg (1992 price) the 12% solution ia caustic soda is priced at ca 47/kg of contaiaed NaBH. ... [Pg.304]

Hydrothermal crystallisation processes occur widely in nature and are responsible for the formation of many crystalline minerals. The most widely used commercial appHcation of hydrothermal crystallization is for the production of synthetic quartz (see Silica, synthetic quartz crystals). Piezoelectric quartz crystals weighing up to several pounds can be produced for use in electronic equipment. Hydrothermal crystallization takes place in near- or supercritical water solutions (see Supercritical fluids). Near and above the critical point of water, the viscosity (300-1400 mPa s(=cP) at 374°C) decreases significantly, allowing for relatively rapid diffusion and growth processes to occur. [Pg.498]


See other pages where Water solution is mentioned: [Pg.220]    [Pg.384]    [Pg.394]    [Pg.910]    [Pg.18]    [Pg.27]    [Pg.215]    [Pg.142]    [Pg.147]    [Pg.312]    [Pg.134]    [Pg.391]    [Pg.296]    [Pg.297]    [Pg.485]    [Pg.486]    [Pg.44]    [Pg.153]    [Pg.193]    [Pg.26]    [Pg.172]    [Pg.278]    [Pg.502]    [Pg.69]    [Pg.305]    [Pg.510]   
See also in sourсe #XX -- [ Pg.224 , Pg.226 ]

See also in sourсe #XX -- [ Pg.224 , Pg.226 ]

See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Solutes water

© 2019 chempedia.info