Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water amplitude radicals from

Fig. 1.4 The calculated results for one acoustic cycle when a bubble in water at 3 °C is irradiated by an ultrasonic wave of 52 kHz and 1.52 bar in frequency and pressure amplitude, respectively. The ambient bubble radius is 3.6 pm. (a) The bubble radius, (b) The dissolution rate of OH radicals into the liquid from the interior of the bubble (solid line) and its time integral (dotted line). Reprinted with permission from Yasui K, Tuziuti T, Sivaknmar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122 224706. Copyright 2005, American Institute of Physics... Fig. 1.4 The calculated results for one acoustic cycle when a bubble in water at 3 °C is irradiated by an ultrasonic wave of 52 kHz and 1.52 bar in frequency and pressure amplitude, respectively. The ambient bubble radius is 3.6 pm. (a) The bubble radius, (b) The dissolution rate of OH radicals into the liquid from the interior of the bubble (solid line) and its time integral (dotted line). Reprinted with permission from Yasui K, Tuziuti T, Sivaknmar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122 224706. Copyright 2005, American Institute of Physics...
Biomolecular spectroscopy on frozen samples at cryogenic temperatures has the distinct disadvantage that the biomolecules are in a state that is not particularly physiological. Recall that EPR spectroscopy is done at low temperatures to sharpen-up spectra by slowing down relaxation, to increase amplitude by increasing Boltzmann population differences, and to decrease diamagnetic absorption of microwaves by changing from water to ice. Certain S = 1/2 systems, notably radicals and a few mononuclear metal ions, have sufficiently slow relaxation, and sufficiently limited spectral anisotropy to allow their EPR detection in the liquid phase at ambient temperatures, be it in aqueous samples of reduced size. [Pg.167]


See other pages where Water amplitude radicals from is mentioned: [Pg.280]    [Pg.155]    [Pg.51]    [Pg.351]    [Pg.88]    [Pg.86]    [Pg.376]    [Pg.172]    [Pg.89]   
See also in sourсe #XX -- [ Pg.73 , Pg.87 , Pg.95 ]




SEARCH



Radicals from

Water radicals

© 2024 chempedia.info