Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational excitation, surface

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

The site specificity of reaction can also be a state-dependent site specificity, that is, molecules incident in different quantum states react more readily at different sites. This has recently been demonstrated by Kroes and co-workers for the Fl2/Cu(100) system [66]. Additionally, we can find reactivity dominated by certain sites, while inelastic collisions leading to changes in the rotational or vibrational states of the scattering molecules occur primarily at other sites. This spatial separation of the active site according to the change of state occurring (dissociation, vibrational excitation etc) is a very surface specific phenomenon. [Pg.911]

The vibrationally excited states of H2-OH have enough energy to decay either to H2 and OH or to cross the barrier to reaction. Time-dependent experiments have been carried out to monitor the non-reactive decay (to H2 + OH), which occurs on a timescale of microseconds for H2-OH but nanoseconds for D2-OH [52, 58]. Analogous experiments have also been carried out for complexes in which the H2 vibration is excited [59]. The reactive decay products have not yet been detected, but it is probably only a matter of time. Even if it proves impossible for H2-OH, there are plenty of other pre-reactive complexes that can be produced. There is little doubt that the spectroscopy of such species will be a rich source of infonnation on reactive potential energy surfaces in the fairly near future. [Pg.2451]

By using this approach, it is possible to calculate vibrational state-selected cross-sections from minimal END trajectories obtained with a classical description of the nuclei. We have studied vibrationally excited H2(v) molecules produced in collisions with 30-eV protons [42,43]. The relevant experiments were performed by Toennies et al. [46] with comparisons to theoretical studies using the trajectory surface hopping model [11,47] fTSHM). This system has also stimulated a quantum mechanical study [48] using diatomics-in-molecule (DIM) surfaces [49] and invoicing the infinite-onler sudden approximation (lOSA). [Pg.241]

The width and shape of the energy loss peaks in HREELS are usually completely determined by the relatively poor instrumental resolution. This means that no information can be obtained from HREELS about such interesting chemical physics questions as vibrational energy transfer, since the influence of the time scale and mechanism of vibrational excitations at surfaces on the lifetimes, and therefore the line widths and shapes, is swamped. (Adsorbates on surfaces have intrinsic vibra-... [Pg.446]

The use of supercomputers has allowed us to test the sensitivity of accurate quantal molecular energy transfer probabilities in diatom-diatom collisions to the choice of potential energy surface, even at total energies great enough to allow both diatoms to be vibrationally excited. [Pg.198]

Vibrationally mediated photodissociation (VMP) can be used to measure the vibrational spectra of small ions, such as V (OCO). Vibrationally mediated photodissociation is a double resonance technique in which a molecule first absorbs an IR photon. Vibrationally excited molecules are then selectively photodissociated following absorption of a second photon in the UV or visible [114—120]. With neutral molecules, VMP experiments are usually used to measure the spectroscopy of regions of the excited-state potential energy surface that are not Franck-Condon accessible from the ground state and to see how different vibrations affect the photodissociation dynamics. In order for VMP to work, there must be some wavelength at which vibrationally excited molecules have an electronic transition and photodissociate, while vibrationally unexcited molecules do not. In practice, this means that the ion has to have a... [Pg.343]

Figure 1. Schematic of the radial cuts of the ground- and excited-state potential energy surfaces at the linear and T-shaped orientations. Transitions of the ground-state, T-shaped complexes access the lowest lying, bound intermolecular level in the excited-state potential also with a rigid T-shaped geometry. Transitions of the linear conformer were previously believed to access the purely repulsive region of the excited-state potential and would thus give rise to a continuum signal. The results reviewed here indicate that transitions of the linear conformer can access bound excited-state levels with intermolecular vibrational excitation. Figure 1. Schematic of the radial cuts of the ground- and excited-state potential energy surfaces at the linear and T-shaped orientations. Transitions of the ground-state, T-shaped complexes access the lowest lying, bound intermolecular level in the excited-state potential also with a rigid T-shaped geometry. Transitions of the linear conformer were previously believed to access the purely repulsive region of the excited-state potential and would thus give rise to a continuum signal. The results reviewed here indicate that transitions of the linear conformer can access bound excited-state levels with intermolecular vibrational excitation.
Raman scattering spectroscopy is used to probe the vibrational excitations of a sample, by measuring the wavelength change of a scattered monochromatic light beam. This is usually performed by impinging a monochromatic laser beam to the sample surface, and by recording the scattered beam spectrum. [Pg.246]

At To = 10 2 to 10 3 s, we have t / = lO to 10" s. The magnitude essentially exceeds the relaxation times of vibration-excited nitrogen on glass (10" s [107]), a fact that points to the complicated nature of 02( ) deactivation on pure glass surface. As the de-excitation of... [Pg.310]

It is unclear exactly how the two potential surfaces, and hence the interaction regions between them, behave as the parent molecules bend. Our experimental results indicate that the more bent the ozone molecules are as they dissociate the more effectively is the available energy channelled into the OA T, ) fragment vibration. It is possible that as the parent molecules bend, the crossing seams move to a region on the repulsive state that more strongly favors the production of vibrationally excited 02(3 ) fragments. [Pg.321]


See other pages where Vibrational excitation, surface is mentioned: [Pg.22]    [Pg.22]    [Pg.261]    [Pg.309]    [Pg.908]    [Pg.1307]    [Pg.1783]    [Pg.2997]    [Pg.3013]    [Pg.262]    [Pg.262]    [Pg.34]    [Pg.325]    [Pg.414]    [Pg.443]    [Pg.178]    [Pg.194]    [Pg.14]    [Pg.39]    [Pg.253]    [Pg.376]    [Pg.233]    [Pg.467]    [Pg.512]    [Pg.513]    [Pg.84]    [Pg.112]    [Pg.246]    [Pg.312]    [Pg.342]    [Pg.365]    [Pg.374]    [Pg.378]    [Pg.150]    [Pg.384]    [Pg.107]    [Pg.109]    [Pg.114]    [Pg.270]    [Pg.321]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Surface vibrations

Vibration excitation

Vibration excited

Vibrationally excited

© 2024 chempedia.info