Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor pressure liquid mixture

Since pf is a function of temperature, the dewpoint and bubble-point temperatures for an ideal vapor or liquid mixture can be determined as a function of the total pressure tr from Eq. (9) or (10), respectively. An analogous procedure can be used for real mixtures, but the nonidealities of the liquid and vapor phases must be accounted for. [Pg.229]

More recently, this method has been successfully extended by us18 to form the inverse systems, i.e. water core/polymer shell particles dispersed, initially in oil, but then transferred to an aqueous continuous phase. Clearly, whether one needs an oil or a water core depends on the nature of the active material to be released. Now one starts with a water/oil emulsion, rather than an oil/water emulsion, but the basic principles are very similar. A variety of shell polymer systems were prepared, including PMMA and poly(tetrahydrofuran) [PTHF]. The high vapor pressure liquid used in this case was in general, acetone. It turned out, however, that these water core systems are intrinsically more difficult to make than the equivalent oil core systems, because large amounts of acetone were required to dissolve the polymers initially in the water-acetone mixtures. An oil was then required which did not mix too well with acetone. In general, mineral oil worked reasonably well. In order to transfer the water core capsules into an aqueous continuous phase, the particles were centrifuged in... [Pg.17]

The Relation of Vapor Pressure and Mixture Composition. In a binary mixture of two completely miscible components, the vapor pressure is a function of the mixture composition as well as of the vapor pressures of the two pure components. If the liquids are ideal, the relation of vapor pressure and composition is given by Raoult s law. At a constant temperature, the partial vapor pressure of a constituent of an ideal mixture is proportional to its mole fraction in the liquid. Thus, for a mixture of A and B, the partial vapor pressure of A is given by Eq. (9),... [Pg.3882]

Example 4.2. Glanville, Sage, and Lacey measured specific volumes of vapor and liquid mixtures of propane and benzene over wide ranges of temperature and pressure. Use the R-K equation to calculate specific volume of a vapour mixture containing 26.92 weight % propane at 400°F (477.59°K) and a saturation pressure of 410.3 psia (2.829 MPa). Compare the computed value to the measured quantity. [Pg.89]

Liquid A has vapor pressures, liquid B has vapor pressure What is the mole fraction of the vapor above the solution if the liquid mixture is 30.% A by moles 50.% A 80.% A (Calculate in terms of x and y)... [Pg.537]

Before proceeding with the paper which has become classical, it is pertinent to glance back at earlier work on the vapor pressure of mixtures. In 1836, Magnus observed that when alcohol was added to ether in the usual barometer assembly, the vapor pressure of both liquids is less than that of the ether alone. [Pg.43]

Regnault (1852) aimed at a general idea of the relations between the vapor pressure of mixtures and those of the components. Alcohol+water (1852) and HCN+water (1864) were examined. Duclaux (1878) used a distillation procedure to gather information about the relations between the composition of the liquid mixture to that of the vapor emitted. His mixtures were water+an n -alcohol ROH (R = CH3 to CgHiv) and water+a carboxylic acid RC02H(R = H, CH3, C2H5, C3H7) Konowalow (1881) also worked on similar mixtures. [Pg.44]

For nonideal vapor and liquid mixtures, the equilibrium constants must be determined experimentally. Since such equilibrium constants are a function of both temperature and pressure, any tabulation must include these two parameters. Table 6.2 provides equilibrium constants for nitrogen, oxygen, and argon for three pressures and a useful range of temperatures. [Pg.293]

American Petroleum Institute, Bibliographies on Hydrocarbons, Vols. 1-4, "Vapor-Liquid Equilibrium Data for Hydrocarbon Systems" (1963), "Vapor Pressure Data for Hydrocarbons" (1964), "Volumetric and Thermodynamic Data for Pure Hydrocarbons and Their Mixtures" (1964), "Vapor-Liquid Equilibrium Data for Hydrocarbon-Nonhydrocarbon Gas Systems" (1964), API, Division of Refining, Washington. [Pg.7]

To predict vapor-liquid or liquid-liquid equilibria in multicomponent systems, we require a method for calculating the fugacity of a component i in a liquid mixture. At system temperature T and system pressure P, this fugacity is written as a product of three terms... [Pg.39]

In Equation (15), the third term is much more important than the second term. The third term gives the enthalpy of the ideal liquid mixture (corrected to zero pressure) relative to that of the ideal vapor at the same temperature and composition. The second term gives the excess enthalpy, i.e. the liquid-phase enthalpy of mixing often little basis exists for evaluation of this term, but fortunately its contribution to total liquid enthalpy is usually not large. [Pg.86]

This chapter presents quantitative methods for calculation of enthalpies of vapor-phase and liquid-phase mixtures. These methods rely primarily on pure-component data, in particular ideal-vapor heat capacities and vapor-pressure data, both as functions of temperature. Vapor-phase corrections for nonideality are usually relatively small. Liquid-phase excess enthalpies are also usually not important. As indicated in Chapter 4, for mixtures containing noncondensable components, we restrict attention to liquid solutions which are dilute with respect to all noncondensable components. [Pg.93]

BUDET calculates the bubble-point temperature or dew-point temperature for a mixture of N components (N < 20) at specified pressure and liquid or vapor composition. The subroutine also furnishes the composition of the incipient vapor or liquid and the vaporization equilibrium ratios. [Pg.326]

Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)... Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)...
Phase transitions in binary systems, nomially measured at constant pressure and composition, usually do not take place entirely at a single temperature, but rather extend over a finite but nonzero temperature range. Figure A2.5.3 shows a temperature-mole fraction T, x) phase diagram for one of the simplest of such examples, vaporization of an ideal liquid mixture to an ideal gas mixture, all at a fixed pressure, (e.g. 1 atm). Because there is an additional composition variable, the sample path shown in tlie figure is not only at constant pressure, but also at a constant total mole fraction, here chosen to be v = 1/2. [Pg.613]

Flash Point. As a liquid is heated, its vapor pressure and, consequendy, its evaporation rate increase. Although a hquid does not really bum, its vapor mixed with atmospheric oxygen does. The minimum temperature at which there is sufficient vapor generated to allow ignition of the air—vapor mixture near the surface of the hquid is called the dash point. Although evaporation occurs below the dash point, there is insufficient vapor generated to form an igrhtable mixture below that point. [Pg.310]

Additional compilations of vapor-pressure data include Boubhk, Fried, and Hala, The Vapor Pre.s.sure.s of Pure Substances, Elsevier, Amsterdam, 1984. See also Hirata, Ohe, and Nagahama, Computer Aided Data Book of Vapor-Liquid Equilibria, Kodansha/Elsevier, Tokyo, 1975 Weishaupt, Landolt-Bornstein New Series Group TV, vol. 3 Thermodynamic Equilibria of Boiling Mixtures, Springer-Verlag, Berhn, 1975 Wichterle, Linek, and Hala, Vapor-Liquid Equilibrium Data Bibliography, Elsevier, Amsterdam, 1973 suppl. 1, 1976 suppl. 2,1982. [Pg.92]

Vapor pressure is the most important of the basic thermodynamic properties affec ting liquids and vapors. The vapor pressure is the pressure exerted by a pure component at equilibrium at any temperature when both liquid and vapor phases exist and thus extends from a minimum at the triple point temperature to a maximum at the critical temperature, the critical pressure. This section briefly reviews methods for both correlating vapor pressure data and for predicting vapor pressure of pure compounds. Except at very high total pressures (above about 10 MPa), there is no effect of total pressure on vapor pressure. If such an effect is present, a correction, the Poynting correction, can be applied. The pressure exerted above a solid-vapor mixture may also be called vapor pressure but is normallv only available as experimental data for common compounds that sublime. [Pg.389]

For mixtures containing more than two species, an additional degree of freedom is available for each additional component. Thus, for a four-component system, the equihbrium vapor and liquid compositions are only fixed if the pressure, temperature, and mole fractious of two components are set. Representation of multicomponent vapor-hquid equihbrium data in tabular or graphical form of the type shown earlier for biuaiy systems is either difficult or impossible. Instead, such data, as well as biuaiy-system data, are commonly represented in terms of ivapor-liquid equilibrium ratios), which are defined by... [Pg.1248]

As discussed in Sec. 4, the icomplex function of temperature, pressure, and equilibrium vapor- and hquid-phase compositions. However, for mixtures of compounds of similar molecular structure and size, the K value depends mainly on temperature and pressure. For example, several major graphical ilight-hydrocarbon systems. The easiest to use are the DePriester charts [Chem. Eng. Prog. Symp. Ser 7, 49, 1 (1953)], which cover 12 hydrocarbons (methane, ethylene, ethane, propylene, propane, isobutane, isobutylene, /i-butane, isopentane, /1-pentane, /i-hexane, and /i-heptane). These charts are a simplification of the Kellogg charts [Liquid-Vapor Equilibiia in Mixtures of Light Hydrocarbons, MWK Equilibnum Con.stants, Polyco Data, (1950)] and include additional experimental data. The Kellogg charts, and hence the DePriester charts, are based primarily on the Benedict-Webb-Rubin equation of state [Chem. Eng. Prog., 47,419 (1951) 47, 449 (1951)], which can represent both the liquid and the vapor phases and can predict K values quite accurately when the equation constants are available for the components in question. [Pg.1248]

The equilibrium vapor pressure above a confined liquid depends only on temperature. The fraction of the total pressure exerted by vapor pressure determines the composition of the vapor-air mixture. Thus when the total pressure is reduced, for example at high elevations or in vacuum tmcks, the vapor concentration in air increases. Since flash points are reported at a... [Pg.84]


See other pages where Vapor pressure liquid mixture is mentioned: [Pg.86]    [Pg.93]    [Pg.344]    [Pg.344]    [Pg.471]    [Pg.536]    [Pg.109]    [Pg.116]    [Pg.25]    [Pg.237]    [Pg.170]    [Pg.392]    [Pg.1220]    [Pg.1911]    [Pg.171]    [Pg.789]    [Pg.1191]    [Pg.1259]    [Pg.2053]    [Pg.2292]    [Pg.2299]    [Pg.39]    [Pg.105]    [Pg.137]    [Pg.164]    [Pg.106]    [Pg.126]    [Pg.127]    [Pg.162]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Liquid mixture

Liquids vapor pressure

Mixture pressure

Vapor mixtures

Vapor-liquid mixtures

© 2024 chempedia.info