Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tunneling, cations

Smith, P. P. K. (1986). Direct imaging of tunnel cations in zinkenite by high-resolution electron microscopy. Amer. Mineral., 71, 194-201. [Pg.379]

Chao et al. [1981] Cation/anion conductors Constrained by Esaki tunneling Cation injection from metal or anion vacancy generation at the m/bl interface No Yes Not addressed... [Pg.387]

The presence of the foreign cation stabilizes the crystal structure of a - Mn02 compounds. This manganese dioxide modification (more exactly it is not a real MnOz modification, since the structure contains a considerable proportion of foreign atoms) can be heated to relatively high temperatures (300 - 400 °C) without destruction of the lattice. Although Thackeray et al. reported the synthesis of cation-and water- free a - MnOz [49, 50J, which is reported to be stable up to 300 °C without destruction of the [2 x 2] tunnel structure, it is commonly believed that a small,... [Pg.95]

Figure 7. Crystal structures of (a) hollandite, (b) romanechite (psilomelane), and (c) todorokite. The structures arc shown as three-dimensional arrangements of the MnO() octahedra (the tunnel-tilling cations and water molecules, respectively, are not shown in these plots) and as projections along the short axis. Small, medium, and large circles represenl the manganese atoms, oxygen atoms, and the foreign cations or water molecules, respectively. Open circles, height z. = 0 fdled circles, height z = Vi. Figure 7. Crystal structures of (a) hollandite, (b) romanechite (psilomelane), and (c) todorokite. The structures arc shown as three-dimensional arrangements of the MnO() octahedra (the tunnel-tilling cations and water molecules, respectively, are not shown in these plots) and as projections along the short axis. Small, medium, and large circles represenl the manganese atoms, oxygen atoms, and the foreign cations or water molecules, respectively. Open circles, height z. = 0 fdled circles, height z = Vi.
For a long time the structural classification of the mineral todorokite was uncertain, until Turner and Buseck [4] could demonstrate by HRTEM investigations that the crystal structure of that mineral consists of triple chains of edge-sharing octahedra, which form [3 x 3] tunnels by further corner-sharing. These tunnels are partially filled by Mg2+, Ca2+, Na+, K+, and water (according to the chemical analysis of natural todorokites). In 1988 Post and Bish could perform a Rietveld structure determination from XRD data taken for a sample of natural todorokite [25], This diffraction study confirmed the results of Turner and Buseck. The cations... [Pg.97]

KMn8016). The Ba2+ and K+ cations partially occupy crystallographic sites at the center of the (2 x 2) tunnels. The presence of these large cations led, for many... [Pg.295]

Molecular sieves (zeolites) are artificially prepared aluminosilicates of alXali metals. The most common types for gas chromatography are molecular sieve 5A, a calcium aluminosilicate with an effective pore diameter of 0.5 nm, and molecular sieve 13X, a sodium aluminosilicate with an effective pore diameter of 1 nm. The molecular sieves have a tunnel-liXe pore structure with the pore size being dependent on the geometrical structure of the zeolite and the size of the cation. The pores are essentially microporous as the cross-sectional diameter of the channels is of similar dimensions to those of small molecules. This also contrilsutes to the enormous surface area of these materials. Two features primarily govern retention on molecular sieves. The size of the analyte idiich determines whether it can enter the porous... [Pg.109]

The mechanism of ion transport in such systems is not fully elucidated, but it is presumably dependent on the degree of crystallinity of the polymeric complex (which further depends on the temperature and the salt type). The ionic conductivity was initially attributed to cation hopping between fixed coordination sites in the depicted helical tunnel, i.e. in the crystalline part of the polymer. [Pg.139]

The remaining compounds listed in Table II all adopt structures with infinite metal-metal bonded chains consisting of octahedral cluster units fused on opposite edges. However, because of the large difference in effective ionic radius of the cations concerned, very different lattice types are dictated. The compounds NaMoi 06 (19,22) and Bas(Moit06)8 (17) adopt tunnel structures with the Na+ or Ba2+ ions located in sites along the tunnels with 8-fold coordination by oxygen atoms. [Pg.272]

Another conductivity mechanism could be suggested for LB films of this polymer with Ag+ cations. Such cations can accept or release electrons easily, so in the layer of such cations the conductivity could be caused by electron transitions between the ions with different degrees of oxidation. With tunneling microscopy an anomaly in the dl/dV(V) curves near zero bias was discovered for the LB films in Ag form with an odd number of layers there was a conductivity peak some 150-200 mV wide (Figure 7.4, Curves 1, 3) but no anomaly for these same films with an even number of layers (Figure 7.4, Curve 2). For LB films with an odd number of layers the ordered superstructure of the scale 11.5 x 11.5 x lO cm has been found in a conductivity dl/dV (x,y) measurement regime. The scale of such a structure corresponds to 3 x 2 surface reconstruction (Figure 7.5). [Pg.106]


See other pages where Tunneling, cations is mentioned: [Pg.104]    [Pg.347]    [Pg.333]    [Pg.333]    [Pg.104]    [Pg.347]    [Pg.333]    [Pg.333]    [Pg.2986]    [Pg.509]    [Pg.130]    [Pg.289]    [Pg.86]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.96]    [Pg.108]    [Pg.294]    [Pg.296]    [Pg.88]    [Pg.70]    [Pg.229]    [Pg.157]    [Pg.168]    [Pg.49]    [Pg.162]    [Pg.162]    [Pg.163]    [Pg.163]    [Pg.170]    [Pg.257]    [Pg.159]    [Pg.272]    [Pg.272]    [Pg.163]    [Pg.287]    [Pg.308]    [Pg.260]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



© 2024 chempedia.info