Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trajectory calculations stochastic model

A simple model for the dynamics of nonresonant laser-induced desorption of adsorbates from surfaces has been formulated by Lucchese and Tully (LT). LT present the result of stochastic, classical trajectory calculations for thermal and laser-induced desorption of NO from LiF(100). For the LID simulations the initial temperature was set at 0 K and temperature Jumps of several thousand degrees were driven in a few picoseconds through nonspecific heating of the substrate. The interaction potential for these calculations... [Pg.65]

The goal of this chapter is twofold. First we wish to critically compare—from both a conceptional and a practical point of view—various classical and mixed quantum-classical strategies to describe non-Born-Oppenheimer dynamics. To this end. Section II introduces five multidimensional model problems, each representing a specific challenge for a classical description. Allowing for exact quantum-mechanical reference calculations, aU models have been used as benchmark problems to study approximate descriptions. In what follows, Section III describes in some detail the mean-field trajectory method and also discusses its connection to time-dependent self-consistent-field schemes. The surface-hopping method is considered in Section IV, which discusses various motivations of the ansatz as well as several variants of the implementation. Section V gives a brief account on the quantum-classical Liouville description and considers the possibility of an exact stochastic realization of its equation of motion. [Pg.250]

As a consistency test of the stochastic model, one can check whether the percentage Nk t) of trajectories propagating on the adiabatic PES Wk is equal to the corresponding adiabatic population probability Pf t). In a SH calculation, the latter quantity may be evaluated by an ensemble average over the squared modulus of the adiabatic electronic coefficients [cf. Eq. (22)], that is. [Pg.278]

Particle trajectories can be calculated by utilizing the modern CFD (computational fluid dynamics) methods. In these calculations, the flow field is determined with numerical means, and particle motion is modeled by combining a deterministic component with a stochastic component caused by the air turbulence. This technique is probably an effective means for solving particle collection in complicated cleaning systems. Computers and computational techniques are being developed at a fast pace, and one can expect that practical computer programs for solving particle collection in electrostatic precipitators will become available in the future. [Pg.1228]

In trajectory models, the particle turbulent diffusion can be considered by calculating the instantaneous motion of particles in the turbulent flow field. In order to simulate the stochastic characteristics of the instantaneous gas velocity in a turbulent flow, it is required to generate random numbers in the calculation process. [Pg.208]

In computation using the stochastic trajectory model, the Monte Carlo approach is commonly employed. It is necessary to calculate several thousands, or even tens of thousands, of trajectories to simulate the particle flow field. The central issue in developing the stochastic trajectory model is how to model the instantaneous turbulent gas flow field. The method... [Pg.209]

Recently Calderon introduced a surrogate process approximation (SPA) to improve the sampling in calculation of the JE. The scheme is applied to the study of the unravelling of deca-alanine at constant temperature in a steered molecular dynamics simulation. The distribution of the work is approximated by developing a model for the dynamics using a relatively small number of real trajectories in conjunction with stochastic differential equations selected to model the process. The... [Pg.197]

Spill models operate in a variety of modes. The most typical is the trajectory mode that predicts the trajectory and weathering of the oil. The stochastic mode uses available data to predict a variety of scenarios for the oil spill, which includes the direction, fate, and property changes in the oil slick. In another mode, often called the receptor mode, a site on the shore or water is chosen and the trajectory from the source of the oil is calculated. Increasingly, statistically generated estimates are added to oil spill models to compensate for the lack of accurate knowledge of winds and currents. [Pg.68]

Following the construction of the model is the calculation of a sequence of states (or a trajectory of the system). This step is usually referred to as the actual simulation. Simulations can be stochastic (Monte Carlo) or deterministic (Molecular Dynamics) or they can combine elements of both, like force-biased Monte Carlo, Brownian dynamics or general Langevin dynamics (see Ref. 16 for a discussion). It is usually assumed that the physical system can be adequately described by the laws of classical mechanics. This assumption will alsq be made throughout the present work. [Pg.4]

Simpler BGK kinetic theory models have, however, been applied to the study of isomerization dynamics. The solutions to the kinetic equation have been carried out either by expansions in eigenfunctions of the BGK collision operator (these are similar in spirit to the discussion in Section IX.B) or by stochastic simulation of the kinetic equation. The stochastic trajectory simulation of the BGK kinetic equation involves the calculation of the trajectories of an ensemble of particles as in the Brownian dynamics method described earlier. [Pg.161]


See other pages where Trajectory calculations stochastic model is mentioned: [Pg.246]    [Pg.317]    [Pg.71]    [Pg.622]    [Pg.53]    [Pg.833]    [Pg.42]    [Pg.401]    [Pg.89]    [Pg.206]    [Pg.210]    [Pg.52]    [Pg.154]    [Pg.251]    [Pg.145]    [Pg.70]    [Pg.109]    [Pg.172]    [Pg.833]    [Pg.145]    [Pg.582]    [Pg.97]    [Pg.450]    [Pg.566]    [Pg.558]    [Pg.624]    [Pg.42]    [Pg.54]   
See also in sourсe #XX -- [ Pg.104 , Pg.107 ]




SEARCH



Model calculations

Stochastic Trajectory Models

Stochastic modeling

Trajectories calculated

Trajectory calculations

Trajectory model

© 2024 chempedia.info