Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Torsional Elasticity for Mesophases

I.W. Stewart, R.J. Atkin [ Datareview in this book 5.1 Torsional elasticity for mesophases ]... [Pg.177]

Elasticity is a macroscopic property of matter defined as the ratio of an applied static stress (force per unit area) to the strain or deformation produced in the material the dynamic response of a material to stress is determined by its viscosity. In this section we give a simplified formulation of the theory of torsional elasticity and how it applies to liquid crystals. The elastic properties of liquid crystals are perhaps their most characteristic feature, since the response to torsional stress is directly related to the orientational anisotropy of the material. An important aspect of elastic properties is that they depend on intermolecular interactions, and for liquid crystals the elastic constants depend on the two fundamental structural features of these mesophases anisotropy and orientational order. The dependence of torsional elastic constants on intermolecular interactions is explained, and some models which enable elastic constants to be related to molecular properties are described. The important area of field-induced elastic deformations is introduced, since these are the basis for most electro-optic liquid crystal display devices. [Pg.286]

An important aspect of the macroscopic structure of liquid crystals is their mechanical stability, which is described in terms of elastic properties. In the absence of flow, ordinary liquids cannot support a shear stress, while solids will support compressional, shear and torsional stresses. As might be expected the elastic properties of liquid crystals are intermediate between those of liquids and solids, and depend on the symmetry and phase type. Thus smectic phases with translational order in one direction will have elastic properties similar to those of a solid along that direction, and as the translational order of mesophases increases, so their mechanical properties become more solid-like. The development of the so-called continuum theory for nematic liquid crystals is recorded in a number of publications by Oseen [ 1 ], Frank [2], de Gennes and Frost [3] and Vertogen and de Jeu [4] extensions of the theory to smectic [5] and columnar phases [6] have also been developed. In this section it is intended to give an introduction to elasticity that we hope will make more detailed accounts accessible the importance of elastic properties in determining the... [Pg.286]


See other pages where Torsional Elasticity for Mesophases is mentioned: [Pg.157]    [Pg.158]    [Pg.159]    [Pg.160]    [Pg.161]    [Pg.162]    [Pg.163]    [Pg.164]    [Pg.157]    [Pg.158]    [Pg.159]    [Pg.160]    [Pg.161]    [Pg.162]    [Pg.163]    [Pg.164]   


SEARCH



Mesophase

Mesophases

Torsional elasticity

© 2024 chempedia.info