Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time dependent self consistent field transfer

For the case of intramolecular energy transfer from excited vibrational states, a mixed quantum-classical treatment was given by Gerber et al. already in 1982 [101]. These authors used a time-dependent self-consistent field (TDSCF) approximation. In the classical limit of TDSCF averages over wave functions are replaced by averages over bundles of trajectories, each obtained by SCF methods. [Pg.16]

Gerber, R.B., Buch, V., Ratner, M.A. Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J. Chem. Phys. 77 (1982) 3022-3030. [Pg.33]

R.B. Gerber, V. Buch and M.A. Ratner, Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules, J. Chem. Phys., 77 (1982), 3022 M.A. Ratner and R.B. Gerber, Excited vibrational states of polyatomic molcecules the semiclassical self-consistent field approach, J. Phys. Chem., 90 (1986) 20 R.B. Gerber and M.A. Ratner, Mean-field models for molecular states and dynamics new developments, J. Phys. Chem., 92 (1988) 3252 ... [Pg.155]

The second part of the chapter (Section III) deals with the time-dependent self-consistent-field (TDSCF) method for studying intramolecular vibrational energy transfer in time. The focus is both on methodological aspects and on the application to models of van der Waals cluster systems, which exhibit non-RRKM type of behavior. Both Sections II and III review recent results. However, some of the examples and the theoretical aspects are presented here for the first time. [Pg.99]

The SCF, or mean-field, approximation does not include the effect of energy transfer processes between the modes. The Cl approach incorporates such effects in a time-independent framework, but as was noted in the previous section this method loses much of the simplicity and insight provided by the SCF model. The most natural extension of the SCF approximation that also describes energy transfer among the coupled modes in the system, and treats this effect by a mean-field approach, is the time-dependent self-consistent-field (TDSCF), or time-dependent mean-field, approximation. [Pg.117]

For variational methods, such as Hartree-Fock (HF), multi-configurational self-consistent field (MCSCF), and Kohn-Sham density functional theory (KS-DFT), the initial values of the parameters are equal to zero and 0) thus corresponds to the reference state in the absence of the perturbation. The A operators are the non-redundant state-transfer or orbital-transfer operators, and carries no time-dependence (the sole time-dependence lies in the complex A parameters). Furthermore, the operator A (t)A is anti-Hermitian, and tlie exponential operator is thus explicitly unitary so that the norm of the reference state is preserved. Perturbation theory is invoked in order to solve for the time-dependence of the parameters, and we expand the parameters in orders of the perturbation... [Pg.44]


See other pages where Time dependent self consistent field transfer is mentioned: [Pg.24]    [Pg.16]    [Pg.45]    [Pg.26]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Field dependence

Self-Consistent Field

Self-consisting fields

Time-dependent self-consistent-field

© 2024 chempedia.info