Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thomas-Fermi-Dirac-based approaches

Density functional theory-based methods ultimately derive from quantum mechanics research from the 1920 s, especially the Thomas-Fermi-Dirac model, and from Slater s fundamental work in quantum chemistry in the 1950 s. The DFT approach is based upon a strategy of modeling electron correlation via general functionals of the electron density. [Pg.272]

The first statistical models of these interactions are the well-known Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD) theories based on the idea of approximating the behavior of electrons by that of the uniform negatively charged gas. Some authors (Sheldon, 1955 Teller, 1962 Balazs, 1967 Firsov, 1953,1957 Townsend and Handler, 1962 Townsend and Keller, 1963 Goodisman, 1971) proved that these theories provide an adequate description of purely repulsive diatomic interactions. Abraham-son (1963, 1964) and Konowalow et al. (Konowalow, 1969 Konowalow and Zakheim, 1972) extended this region to intermediate internuclear distances, but Gombas (1949) and March (1957) showed that the Abraham-son approach is incorrect, and so the question of how adequately the TFD theory provides diatomic interactions for closed-shell atoms is still open. Here we need to note that until recently, there has existed only work by Sheldon (1955), as far as we know, in which the TFD interaction potential is actually calculated by solving the TFD equation for a series of internuclear distances (see also, Kaplan, 1982). [Pg.197]

The basic idea underlying the development of the various density functional theory (DFT) formulations is the hope of reducing complicated, many-body problems to effective one-body problems. The earlier, most popular approaches have indeed shown that a many-body system can be dealt with statistically as a one-body system by relating the local electron density p(r) to the total average potential, y(r), felt by the electron in the many-body situation. Such treatments, in fact, produced two well-known mean-field equations i.e. the Hartree-Fock-Slater (HFS) equation [14] and the Thomas-Fermi-Dirac (TFD) equation [15], It stemmed from such formulations that to base those equations on a density theory rather than on a wavefunction theory would avoid the full solution... [Pg.104]

For some computational techniques in quantum chemistry a simple zero-th order approximation of the electron density of any atom of the system can be useful as the starting point of an iterative procedure. A very simple description of the electron density and binding energy of any atom or ion allows a rapid evaluation of very complex stmctures. This is the spirit of the orbital-free, explicit density functional approaches, usually based on the Thomas-Fermi-Dirac model and its extensions [1]. [Pg.327]

The DFT concept of calculating the energy of a system from its electron density seems to have arisen in the 1920s with work by Fermi, Dirac, and Thomas. However, this early work was useless for molecular studies, because it predicted molecules to be unstable toward dissociation. Much better for chemical work, but still used mainly for atoms and in solid-state physics, was the Xa method, introduced by Slater in 1951. Nowadays the standard DFT methodology used by chemists is based on the Hohenberg-Kohn theorems and the Kohn-Sham approach... [Pg.644]


See other pages where Thomas-Fermi-Dirac-based approaches is mentioned: [Pg.328]    [Pg.328]    [Pg.216]    [Pg.216]    [Pg.216]    [Pg.124]    [Pg.162]    [Pg.3]    [Pg.6]    [Pg.206]    [Pg.171]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



1-based approach

Fermi-Dirac

Thomas-Fermi

Thomas-Fermi-Dirac

© 2024 chempedia.info