Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Role of Contact Angle in Flotation

The basic phenomenon involved is that particles of ore are carried upward and held in the froth by virtue of their being attached to an air bubble, as illustrated in the inset to Fig. XIII-4. Consider, for example, the gravity-free situation indicated in Fig. XIII-5 for the case of a spherical particle. The particle may be entirely in phase A or entirely in phase B. Alternatively, it may be located in the interface, in which case both 7sa nnd 7sb contribute to the total surface free energy of the system. Also, however, some liquid-liquid interface has been eliminated. It may be shown (see Problem XIII-12) that if there is a finite contact angle, 0sab the stable position of the particle is at the interface, as shown in Fig. XIII-5Z . Actual measured detachment forces are in the range of 5 to 20 dyn [60]. [Pg.473]

It is helpful to consider qualitatively the numerical magnitude of the surface tensional stabilization of a particle at a liquid-liquid interface. For simplicity, we will assume 6 = 90°, or that 7sa = 7SB- Also, with respect to the interfacial areas, J sA = SB, since the particle will lie so as to be bisected by the plane of the liquid-liquid interface, and. AB = rcr - The free energy to displace the particle from its stable position will then be just trr 7AB- For a particle of l-mm radius, this would amount to about 1 erg, for Tab = 40 ergs/cm. This corresponds roughly to a restoring force of 10 dyn, since this work must be expended in moving the particle out of the interface, and this amounts to a displacement equal to the radius of the particle. [Pg.473]

In the usual situation illustrated in Fig. XIII-6 the particle is supported at a liquid-air interface against gravitational attraction. As was seen, the restoring force [Pg.473]

In practice, it may be possible with care to float somewhat larger particles than those corresponding to the theoretical maximum. As illustrated in Fig. XIII-7, if the particle has an irregular shape, it will tend to float such that the three-phase contact occurs at an asperity since the particle would have to be depressed considerably for the line of contact to advance further. The resistance to rounding a sharp edge has been investigated by Mason and co-workers [62]. [Pg.474]

The preceding upper limit to particle size can be exceeded if more than one bubble is attached to the particle, t A matter relating to this and to the barrier that exists for a bubble to attach itself to a particle is discussed by Leja and Poling [63] see also Refs. 64 and 65. The attachment of a bubble to a surface may be divided into steps, as illustrated in Figs. XIII-8a-c, in which the bubble is first distorted, then allowed to adhere to the surface. Step 1, the distortion step, is not actually unrealistic, as a bubble impacting a surface does distort, and only after the liquid film between it and the surface has sufficiently thinned does [Pg.474]


See other pages where The Role of Contact Angle in Flotation is mentioned: [Pg.473]   


SEARCH



Angle of contact

Contact-angle, flotation

The contact angle

© 2024 chempedia.info