Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Nitro Group

Anthraquinone can be brominated, chlorinated directly to the tetrachloro (I, 4, 5, 8-) stage, nitrated easily in the 1-position, but gives the 1,5-and 1,8-dinitro-derivalives on prolonged nitration the nitro groups in these compounds are easily displaced by neutral solutions of alkali sulphites yielding the corresponding sulphonic acids. Sulphonation with 20-30 % oleum gives the 2- 2,6- and 2,7-derivatives in the presence of Hg the 1- 1,5- and 1,8- derivatives are formed. [Pg.37]

The nitrochlorobenzenes are valuable dyestufTs intermediates. The presence of the nitro-groups makes the chlorine atom very reactive and easily replaceable. Treatment with ammonia or dilute alkalis substitutes an amino- or hydroxy-group for the chlorine atom and gives a series of nilroanilines and nilrophenols. [Pg.277]

Some nitro-compounds are themselves coloured and can be used as dyestuffs, e.g. picric acid. In this case the nitro-group can be considered to be the chromophore. For aliphatic nitro-compounds see nitroparaffins. [Pg.277]

The treatment of conjugated systems in terms of electron systems that extend smoothly over all atoms allows the treatment of a variety of structural phenomena, as may be explained with a spedes that shows hindered rotation and with the nitro group. [Pg.65]

Figure 2-52. a) Two semipolar resonance structures are needed in a correct VB representation of the nitro group, b) Representation of a nitro group by a structure having a pentavalent nitrogen atom, c) The RAMSES notation of a nitro group needs no charged resonance structures. One jr-system contains four electrons on three atoms. [Pg.66]

Nitromethane, CH3NO2, the first member of the homologous series, can, however, be readily prepared by a special reaction. When equimolecular amounts of sodium nitrite and sodium monochloroacetate are heated together in aqueous solution, the chlorine in the monochloroacetate is replaced by the nitro group, and the sodium nitroacetate thus formed undergoes hydrolysis follow ed by decarboxylation ... [Pg.131]

Reduction to aminophenol. Reduce about 0 5 g. of o-nitrophenol with cone. HCl and tin as described on p. 385. After a few minutes the yellow molten o-nitrophenol disappears completely, the solution becoming homogeneous and colourless due to the formation of 0-aminophenol (which is soluble in HCl). Cool and add 30% aqueous NaOH solution note that a white precipitate is first formed and then redissolvcs in an excess of NaOH, and that the solution does not develop an orange coloration, indicating that the nitro-group has been reduced. [Pg.386]

The nitroparaffiiis in which the nitro group is attached to a primary or secondary carbon atom exist in tautomeric forms, for example ... [Pg.302]

If the temperature is allowed to rise above 240°, reduction of the nitro groups will occur and carbazole will be formed. [Pg.528]

A number of selected aromatic nitro compounds are collected in Table IV,16A, It will be noted that a few nitro aromatic esters have been included in the Table. These are given here because the nitro group may be the first functional group to be identified aromatic nitro esters should be treated as other esters and hydrolysed for final identification. [Pg.529]

It is convenient to include under Aromatic Amines the preparation of m-nitroaniline as an example of the selective reduction of one group in a polynitro compound. When wt-dinitrobenzene is allowed to react with sodium polysulphide (or ammonium sulphide) solution, only one of the nitro groups is reduced and m-nitroanUine results. Some sulphur separates, but the main reaction is represented by ... [Pg.563]

It may be mentioned that diazonium fluoborates containing the nitro group usually decompose suddenly and with violence upon heating, hence if o- or p-fluonitrobenzene are required, the fluoborates (in 10-20 g. quantities) should he mixed with 3-4 times their weight of pure dry sand (or barium sulphate or sodium fluoride) and heated cautiously until decomposition commences intermittent heating will be required to complete the reaction. [Pg.595]

It looks as though we can get B from A (which is used in frame 247) and so the nitro group is the obvious source of the amino group. It will also allow us to hydrolyse one ether specifically by nucleophilic aromatic substitution. [Pg.132]

Investigations of the solubilities of aromatic compounds in concentrated and aqueous sulphuric acids showed the activity coefficients of nitrocompounds to behave unusually when the nitro-compound was dissolved in acid much more dilute than required to effect protonation. This behaviour is thought to arise from changes in the hydrogenbonding of the nitro group with the solvent. [Pg.18]

The combined inductive and field effects of these poles do not produce strong discrimination between the m- and /i-positions in nitration m p for. NMe3+, and smaller for the protonated poles). This situation is in marked contrast to that produced by, say, the nitro group ( 9.1.3), and suggests that the —M effect is more discriminating between m- and -positions than is the — I effect. [Pg.169]

In some situations the nitro group behaves as if it exerted its influence mainly by the inductive process, but in nitration its behaviour seems to place it with this group of —I —M substituents. The precise way in which a sulphone group is described depends on how much weight is given to the ability of the sulphur atom to expand its octet the positive... [Pg.177]

A similar study of the nitration of 2,5-dichloro- and 2,5-dibromo-nitrobenxene under a variety of conditions has been made. At the very high acidities in oleum the o /)-ratio for nitration was less than unity. It increased with decreasing acidity of the medium and became greater than unity at roughly the acidity represented by 89-90 % sulphuric acid. The results were interpreted in terms of the interaction between the nitronium ion and the nitro group, but the results are complicated and the interpretation not compelling. [Pg.190]

In this preparation, phenyi-2-nitropropene is reduced to phenyl-2-nitropropane with sodium borohydride in methanol, followed by hydrolysis of the nitro group with hydrogen peroxide and potassium carbonate, a variety of the Nef reaction. The preparation is a one-pot synthesis, without isolation of the intermediate. [Pg.165]

Efforts directed to prepare MDP2P via this method results in good yields of a ketone with properties completely dissimilar to MDP2P, and is probably the propiophenone, formed by migration of the nitro group during the hydrolysis. [Pg.166]

Allylic nitro compounds form rr-allylpalladium complexes by displacement of the nitro group and react with nucleophiles, and allylation with the tertiary nitro compound 202 takes place at the more substituted side without rearrangement to give 203[8,9,128]. [Pg.317]

The telomer obtained from the nitromethane 65 is a good building block for civetonedicarboxylic acid. The nitro group was converted into a ketone, and the terminal alkenes into carboxylic acids. The acyloin condensation of protected dimethyl dvetonedicarboxylate (141) afforded the 17-membered acyloin 142, which was modified to introduce a triple bond 143. Finally, the triple bond was reduced to give civetone (144)[120). [Pg.444]

The telomer 145 of nitroethane was used for the synthesis of recifeiolide (148)[121], The nitro group was converted into a hydroxy group via the ketone and the terminal double bond was converted into iodide to give 146. The ester 147 of phenythioacetic acid was prepared and its intramolecular alkylation afforded the 12-membered lactone, which was converted into recifeiolide (148),... [Pg.445]

As another example of nitrene formation, the reaction of o-nitrostilbene (96) with CO in the presence of SnCU affords 2-phenylindole (97). The reaction is explained by nitrene formation by deoxygenation of the nitro group with CO, followed by the addition of the nitrene to alkene. Similarly, the 2//-indazole derivative 99 was prepared by reductive cyclization of the A-(2-nitrobenzyli-dene)amine 98[89]. [Pg.539]

Reduction of 2.4-dimethyl-5-nitrothiazole with activated iron gives a product that after acetylation yields 25% 2.4-dimethyl-5-acetamido-thiazole (58). The reduction of 2-methyl 5-nitrothiazole is also reported (351 to give a mixture of products. The nitro group of 2-acetylhydrazino-5-nitrothiazole is reduced by TiCl in hydrochloric acid or by Zn in acetic acid (591. [Pg.16]

These acylating agents are the most commonly used (246). Acid chlorides react with 5-nitro-2-aminothiazoIe (88) despite the deactivating effect of the nitro group (Scheme 61) (247), but more vigorous conditions are required (248). [Pg.48]

The nitro group increases the acidity of the hydrogen born by the exocyclic nitrogen, and alkylation of 2-nitraminothiazole with diazomethane is possible (87), The formed 2-(A"-methylnitramino)-thiazole also may be obtained from the reaction of 2-nitraminothiazole with dimethylsulfate in basic medium (194). [Pg.112]

For 2-amino-4- m-nitrophenyl) seienazole, the yield is particularly high. This has been explained by the oxidizing effect of the nitro group, which liberates iodine from the hydrogen iodide eliminated in the condensation reaction. [Pg.225]


See other pages where The Nitro Group is mentioned: [Pg.277]    [Pg.66]    [Pg.117]    [Pg.168]    [Pg.331]    [Pg.393]    [Pg.524]    [Pg.1057]    [Pg.1071]    [Pg.3]    [Pg.73]    [Pg.114]    [Pg.174]    [Pg.190]    [Pg.140]    [Pg.142]    [Pg.199]    [Pg.370]    [Pg.378]    [Pg.8]    [Pg.16]    [Pg.115]    [Pg.52]    [Pg.82]   


SEARCH



Nitro group

© 2024 chempedia.info