Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The application of adsorption methods

The adsorption of a gas by a solid can, in principle, be made to yield valuable information as to the surface area and pore structure of the solid. In practice the range of suitable adsorptives is quite narrow, by far the most commonly used one being nitrogen at its boiling point, 77 K. [Pg.37]

A Type II isotherm indicates that the solid is non-porous, whilst the Type IV isotherm is characteristic of a mesoporous solid. From both types of isotherm it is possible, provided certain complications are absent, to calculate the specific surface of the solid, as is explained in Chapter 2. Indeed, the method most widely used at the present time for the determination of the surface area of finely divided solids is based on the adsorption of nitrogen at its boiling point. From the Type IV isotherm the pore size distribution may also be evaluated, using procedures outlined in Chapter 3. [Pg.37]

Type 1 isotherms, as will be demonstrated in Chapter 4, are characteristic of microporous adsorbents. The detailed interpretation of such isotherms is controversial, but the majority of workers would probably agree that the very concept of the surface area of a microporous solid is of doubtful validity, and that whilst it is possible to obtain an estimate of the total micropore volume from a Type I isotherm, only the crudest guesses can be made as to the pore size distribution. [Pg.37]

Isotherms of Type 111 and Type V, which are the subject of Chapter 5, seem to be characteristic of systems where the adsorbent-adsorbate interaction is unusually weak, and are much less common than those of the other three types. Type III isotherms are indicative of a non-porous solid, and some halting steps have been taken towards their use for the estimation of specific surface but Type V isotherms, which betoken the presence of porosity, offer little if any scope at present for the evaluation of either surface area or pore size distribution. [Pg.37]

One of the most important uses of specific surface determination is for the estimation of the particles size of finely divided solids the inverse relationship between these two properties has already been dealt with at some length. The adsorption method is particularly relevant to powders having particle sizes below about 1 pm, where methods based on the optical microscope are inapplicable. If, as is usually the case, the powder has a raiige of particle sizes, the specific surface will lead to a mean particle size directly, whereas in any microscopic method, whether optical or electron-optical, a large number of particles, constituting a representative sample, would have to be examined and the mean size then calculated. [Pg.37]


Stolman and Stewart extended the application of adsorption methods to the isolation and determination of morphine, codeine and diamorphine from viscera. [Pg.862]


See other pages where The application of adsorption methods is mentioned: [Pg.37]   


SEARCH



Application adsorption

Application of method

Application of the Method

Applications of adsorption

© 2024 chempedia.info