Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature limited systems

When cured with room temperature curing system these resins have similar thermal stability to ordinary bis-phenol A type epoxides. However, when they are cured with high-temperature hardeners such as methyl nadic anhydride both thermal degradation stability and heat deflection temperatures are considerably improved. Chemical resistance is also markedly improved. Perhaps the most serious limitation of these materials is their high viscosity. [Pg.762]

Chapter 9 also discusses the case where the cooling water temperature seasonally becomes too low. It then may be necessary to add temperature control or a temperature-limitation system to the first cooler (Fig. 9.12). Instrumentation considerations are the same as those given above. [Pg.1118]

The limiting temperature for graphite use in fusion systems is defined by tliermal sublimation (--1500-2000°C). However, a process which is very similar to thermal sublimation (in cause and in effect) appears to define the current temperature limit. This phenomenon, which is known as radiation enhanced sublimation (RES), is not clearly understood but dominates above a temperature of about 1000°C and increases exponentially with increasing temperatme. [Pg.418]

Let us first of all consider the deterministic Life rule, or zero temperature limit of our more general stochastic rule. Using the density p to represent our state of knowledge of the system at time t, our problem is then to estimate the time-evolution of p for T = 0. [Pg.364]

Warm and hot water heating systems 27/453 Design water flow temperature 27/454 Maximum water velocity 27/454 Minimum water velocity 27/454 System temperature drop 27/455 Use of temperature-limiting valves on emitters 27/455 [Pg.401]

Every column (including chemically bonded columns) will have some column bleed. The amount of column bleed will increase with increasing column temperature, film thickness, column diameter, and column length. The base line starts to rise approximately 25-50° below the upper temperature limit of the stationary phase. After a column is installed in a GC/MS system, a background spectrum should be obtained for future reference. [Pg.362]

Extension to the multidimensional case is trivial. Wigner developed a complete mechanical system, equivalent to quantum mechanics, based on this distribution. He also showed that it satisfies many properties desired by a phase-space distribution, and in the high-temperature limit becomes the classical distribution. [Pg.270]

The form of the stochastic transfer function p x) is shown in figure 10.7. Notice that the steepness of the function near a - 0 depends entirely on T. Notice also that this form approaches that of a simple threshold function as T —> 0, so that the deterministic Hopfield net may be recovered by taking the zero temperature limit of the stochastic system. While there are a variety of different forms for p x) satisfying this desired limiting property, any of which could also have been chosen, this sigmoid function is convenient because it allows us to analyze the system with tools borrowed from statistical mechanics. [Pg.529]

Among the properties sought in the solvent are low cost, avadabihty, stabiUty, low volatiUty at ambient temperature, limited miscibility in aqueous systems present in the process, no solvent capacity for the salts, good solvent capacity for the acids, and sufficient difference in distribution coefficient of the two acids to permit their separation in the solvent-extraction operation. Practical solvents are C, C, and alcohols. For industrial process, alcohols are the best choice (see Amyl alcohols). Small quantities of potassium nitrate continue to be produced from natural sources, eg, the caUche deposits in Chile. [Pg.536]

The martensite - austenite transition temperatures we find are for all systems in accordance with the previously published ones . Some minor deviations can be attributed to the fact that we are simulating an overheated first order phase transition. Therefore, for our limited system sizes, one cannot expect a definite transition temperature. [Pg.97]

Dispersed Noninhibited Systems. Drilling fluid systems typically used to drill the upper hole sections are described as dispersed noninhibited systems. They would typically be formulated with freshwater and can often derive many of their properties from dispersed drilled solids or bentonite. They would not normally be weighted to above 12 Ib/gal and the temperature limitation would be in the range of 176-194°F. The flow properties are controlled by a deflocculant, or thinner, and the fluid loss is controlled by the addition of bentonite and low viscosity CMC derivatives. [Pg.666]

In addition to epoxy-phenolic adhesives three-part epoxy-phenolic-nitrile rubber systems are used in metal-metal edge joints and honeycomb constructions [208], These add toughness not available in most EP systems and improve peel strengths. When used on honeycomb, the NR-P is normally applied to the aluminum skin and the EP to the honeycomb for assembly. Service temperature limitations are those imposed by the NR-P part. [Pg.932]

Nonselective catalytic reduction systems are often referred to as three-way conversions. These systems reduce NO, unbumed hydrocarbon, and CO simultaneously. In the presence of the catalyst, the NO are reduced by the CO resulting in N2 and CO2 (37). A mixture of platinum and rhodium has been generally used to promote this reaction (37). It has also been reported that a catalyst using palladium has been used in this appHcation (1). The catalyst operation temperature limits are 350 to 800°C, and 425 to 650°C are the most desirable. Temperatures above 800°C result in catalyst sintering (37). Automotive exhaust control systems are generally NSCR systems, often shortened to NCR. [Pg.512]

One early program carried out at AUied-Signal, Inc. proposed the use of conductive polymers in remotely readable indicators (210). Conductivity changes induced in the conductive polymer could be read externally and the history of the sample known. Systems designed to detect time—temperature, temperature limit, radiation dosage, mechanical abuse, and chemical exposure were developed. [Pg.45]


See other pages where Temperature limited systems is mentioned: [Pg.127]    [Pg.127]    [Pg.401]    [Pg.58]    [Pg.222]    [Pg.54]    [Pg.464]    [Pg.100]    [Pg.409]    [Pg.515]    [Pg.216]    [Pg.41]    [Pg.475]    [Pg.2511]    [Pg.207]    [Pg.24]    [Pg.352]    [Pg.464]    [Pg.932]    [Pg.22]    [Pg.79]    [Pg.216]    [Pg.899]    [Pg.101]    [Pg.159]    [Pg.463]    [Pg.102]    [Pg.271]    [Pg.334]    [Pg.896]    [Pg.627]    [Pg.341]    [Pg.364]    [Pg.271]    [Pg.143]    [Pg.444]   


SEARCH



Limitations systems

Limiting temperatures

Temperature limitations

Temperature limiter

Temperature systems

© 2019 chempedia.info