Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Taylor microscales velocity

Like the velocity spatial correlation function discussed in Section 2.1, the scalar spatial correlation function provides length-scale information about the underlying scalar field. For a homogeneous, isotropic scalar field, the spatial correlation function will depend only on r = r, i.e., R,p(r, t). The scalar integral scale L and the scalar Taylor microscale >-,p can then be computed based on the normalized scalar spatial correlation function fp, defined by... [Pg.89]

Earlier it was stated that the structure of a turbulent velocity field may be presented in terms of two parameters—the scale and the intensity of turbulence. The intensity was defined as the square root of the turbulent kinetic energy, which essentially gives a root-mean-square velocity fluctuation U. Three length scales were defined the integral scale /q, which characterizes the large eddies the Taylor microscale X, which is obtained from the rate of strain and the Kolmogorov microscale 1, which typifies the smallest dissipative eddies. These length scales and the intensity can be combined to form not one, but three turbulent Reynolds numbers Ri = U lo/v, Rx. = U X/v, and / k = U ly/v. From the relationship between Iq, X, and /k previously derived it is found that / ... [Pg.195]


See other pages where Taylor microscales velocity is mentioned: [Pg.146]    [Pg.60]    [Pg.125]    [Pg.384]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Taylor microscale

Taylor microscales

© 2024 chempedia.info