Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Symmetric states pulse laser preparation

It has been shown [31] that a system of two identical two-level atoms may be prepared in the symmetric state s) by a short laser pulse. The conditions for a selective excitation of the collective atomic states can be analyzed from the interaction Hamiltonian of the laser field with the two-atom system. We make the unitary transformation... [Pg.236]

Figure 1. Intramolecular vibrational density redistribution IVR of Na3 Figure 1. Intramolecular vibrational density redistribution IVR of Na3<B). The three-dimensional (3d) ab initio dynamics of the representative wavepacket B(QS, r,<p, t) is illustrated by equidensity contours pB(QSyr,ip) = B(QS, r,ip, t) 2 = const in vibrational coordinate space Qs, Qx = r cos <p, Qy = r sin ip for the symmetric stretch and radial (r) plus angular (<p) pseudorotations, viewed along the Qy axis. The IVR is demonstrated exemplarily by four sequential snapshots for the case where the initial wavepacket (r = 0) results from a Franck-Condon (FC) transition Na3(X) - Naj( ) similar results are obtained for the 120-fs laser pulse excitation (X = 621 nm, / = 520 MW/cm2) [1,4, 5]. The subsequent dynamics in vibrational coordinate space displays apparent vibrations along the symmetric stretch coordinate Qs (Tj = 320 fs), followed by intramolecular vibrational density redistribution to the other, i.e., pseudorotational vibrational degrees of freedom. This type of IVR does not imply intramolecular vibrational energy redistribution between different vibrational states of Na3(B), i.e., the wavepacket shown has the same expansion, Eq. (1), for all times. The snapshots are taken from a movie prepared by T. Klamroth and M. Miertschink.
Figure 45. Schematic representation of the preparation and detection of rotational coherence in a molecule. The case depicted corresponds to the linearly polarized excitation (polarization vector ,) of a symmetric top molecule in ground-state ro-vibronic level S0v0 J0K0M0) to those rotational levels of the excited vibronic state 15,1 ,) allowed by the rotational selection rules germane to a parallel-type transition moment. The excitation process creates a superposition state of three rotational levels, the coherence properties of which can be probed by time resolving the polarized fluorescence (polarization it) to the manifold of ground-state ro-vibronic levels S0vf JfKfMfy, or by probing with a second, variably time-delayed laser pulse (polarization... Figure 45. Schematic representation of the preparation and detection of rotational coherence in a molecule. The case depicted corresponds to the linearly polarized excitation (polarization vector ,) of a symmetric top molecule in ground-state ro-vibronic level S0v0 J0K0M0) to those rotational levels of the excited vibronic state 15,1 ,) allowed by the rotational selection rules germane to a parallel-type transition moment. The excitation process creates a superposition state of three rotational levels, the coherence properties of which can be probed by time resolving the polarized fluorescence (polarization it) to the manifold of ground-state ro-vibronic levels S0vf JfKfMfy, or by probing with a second, variably time-delayed laser pulse (polarization...

See other pages where Symmetric states pulse laser preparation is mentioned: [Pg.215]    [Pg.236]    [Pg.550]    [Pg.7]    [Pg.28]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Laser pulse

Preparation pulse

Prepared states

State symmetric

© 2024 chempedia.info