Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supervised pattern recognition SIMCA method

Classical supervised pattern recognition methods include /( -nearest neighbor (KNN) and soft independent modeling of class analogies (SIMCA). Both... [Pg.112]

Supervised pattern recognition methods are used for predicting the class of unkno-wm samples given a training set of samples with known class member-sliip. Tvksmethods are discussed in Section 4.3, KNN and SIMCA,... [Pg.95]

Current methods for supervised pattern recognition are numerous. Typical linear methods are linear discriminant analysis (LDA) based on distance calculation, soft independent modeling of class analogy (SIMCA), which emphasizes similarities within a class, and PLS discriminant analysis (PLS-DA), which performs regression between spectra and class memberships. More advanced methods are based on nonlinear techniques, such as neural networks. Parametric versus nonparametric computations is a further distinction. In parametric techniques such as LDA, statistical parameters of normal sample distribution are used in the decision rules. Such restrictions do not influence nonparametric methods such as SIMCA, which perform more efficiently on NIR data collections. [Pg.398]

The aim of supervised classification is to create rules based on a set of training samples belonging to a priori known classes. Then the resulting rules are used to classify new samples in none, one, or several of the classes. Supervised pattern recognition methods can be classified as parametric or nonparametric and linear or nonlinear. The term parametric means that the method makes an assumption about the distribution of the data, for instance, a Gaussian distribution. Frequently used parametric methods are EDA, QDA, PLSDA, and SIMCA. On the contrary, kNN and CART make no assumption about the distribution of the data, so these procedures are considered as nonparametric. Another distinction between the classification techniques concerns the... [Pg.303]

If the membership of objects to particular clusters is known in advance, the methods of supervised pattern recognition can be used. In this section, the following methods are explained linear learning machine (LLM), discriminant analysis, A -NN, the soft independent modeling of class analogies (SIMCA) method, and Support Vector Machines (SVMs). [Pg.184]


See other pages where Supervised pattern recognition SIMCA method is mentioned: [Pg.232]    [Pg.60]    [Pg.419]    [Pg.248]    [Pg.1628]    [Pg.293]    [Pg.37]    [Pg.185]    [Pg.29]   


SEARCH



Pattern recognition

Pattern recognition SIMCA

Pattern recognition methods

Recognition Methods

SIMCA method

Supervised

Supervised SIMCA

Supervised methods

© 2024 chempedia.info