Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superposition states symmetric state, pulse laser

The procedure that we propose to enhance the concentration of a particulap enantiomer when starting with a racemic mixture, that is, to purify the mixture) is as follows [259], The mixture of statistical (racemic) mixture of L and irradiated with a specific sequence of three coherent laser pulses, as described below. These pulses excite a coherent superposition of symmetric and antisymmetric vibrational states of G. After each pulse the excited system is allowed to relax bg t to the ground electronic state by spontaneous emission or by any other nonradiativ process. By allowing the system to go through many irradiation and relaxatio cycles, we show below that the concentration of the selected enantiomer L or can be enhanced, depending on tire laser characteristics. We call this scenario lat distillation of chiral enantiomers. [Pg.176]

Figure 45. Schematic representation of the preparation and detection of rotational coherence in a molecule. The case depicted corresponds to the linearly polarized excitation (polarization vector ,) of a symmetric top molecule in ground-state ro-vibronic level S0v0 J0K0M0) to those rotational levels of the excited vibronic state 15,1 ,) allowed by the rotational selection rules germane to a parallel-type transition moment. The excitation process creates a superposition state of three rotational levels, the coherence properties of which can be probed by time resolving the polarized fluorescence (polarization it) to the manifold of ground-state ro-vibronic levels S0vf JfKfMfy, or by probing with a second, variably time-delayed laser pulse (polarization... Figure 45. Schematic representation of the preparation and detection of rotational coherence in a molecule. The case depicted corresponds to the linearly polarized excitation (polarization vector ,) of a symmetric top molecule in ground-state ro-vibronic level S0v0 J0K0M0) to those rotational levels of the excited vibronic state 15,1 ,) allowed by the rotational selection rules germane to a parallel-type transition moment. The excitation process creates a superposition state of three rotational levels, the coherence properties of which can be probed by time resolving the polarized fluorescence (polarization it) to the manifold of ground-state ro-vibronic levels S0vf JfKfMfy, or by probing with a second, variably time-delayed laser pulse (polarization...

See other pages where Superposition states symmetric state, pulse laser is mentioned: [Pg.149]   


SEARCH



Laser pulse

State symmetric

Superposition states

Superpositional state

Superpositioning

Superpositions

© 2024 chempedia.info