Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress tensor bead-spring model

It is interesting to examine the bead-spring models to see what flow-induced configurational changes would be required in order to develop N2 values of the proper magnitude and sign. In the Rouse model, the components of the stress tensor are related directly to averages of the internal coordinates of the beads. For the simplest case of the elastic dumbbell ... [Pg.151]

To estimate the intrinsic viscosity in the bead-spring model, we need to find how much the stress tensor in the flowing fluid changes when a unit amount of the polymer is added. At low concentrations, the increase in the stress tensor (a, /3 = x, y, z) due to the presence of bead-spring chains is given as... [Pg.240]

Extension of this theory can also be used for treating concentrated polymer solution response. In this case, the motion of, and drag on, a single bead is determined by the mean intermolecular force field. In either the dilute or concentrated solution cases, orientation distribution functions can be obtained that allow for the specification of the stress tensor field involved. For the concentrated spring-bead model, Bird et al. (46) point out that because of the proximity of the surrounding molecules (i.e., spring-beads), it is easier for the model molecule to move in the direction of the polymer chain backbone rather than perpendicular to it. In other words, the polymer finds itself executing a sort of a snake-like motion, called reptation (47), as shown in Fig. 3.8(b). [Pg.124]

The starting point of a molecular constitutive theory is a simple mechanical model for the molecule that captures its most salient traits. Thus, flexible polymer molecules have been represented by elastic dumbbells and bead-spring chains, and rigid polymers by rigid dumbbells and rigid rods. For its simplicity, the evolution of the model molecule is easily described by a convection-diffusion equation. Then a Fokker-Planck equation is written for the probability distribution function of an ensemble of these molecules. Finally, the macroscopic stress tensor is derived in terms of the distribution function. This kinetic theory framework was pioneered by Kirkwood (see, for example, Ref. ). [Pg.2959]

Once the singlet distribution function has been found, we are in a position to evaluate the various contributions to the fluxes that depend on (see Table 1). In this section we discuss the contnbutions to the stress tensor, and in the next two sections the contnbutions to the mass and heat flux vectors. In these sections, for illustrative purposes, we restrict ourselves to the Rouse bead-spring chain and the Hookean dumbbell models, for which we can use the singlet distribution functions , given in Eqs. (13.5) and (13.8). [Pg.64]

The simplest model for dilute polymer solutions is to idealize the polymer molecule as an elastic dumbbell consisting of two beads connected by a Hookean spring immersed in a viscous fluid (Fig. 2.1). The spring has an elastic constant Hq. Each bead is associated with a frictional factor C and a negligible mass. If the instantaneous locations of the two beads in space are riand r2, respectively, then the end-to-end vector, R = ri — ri, describes the overall orientation and the internal conformation of the polymer molecule. The polymer-contributed stress tensor can be related to the second-order moment of R. There are two expressions namely the Kramers expression and the Giesekus expression, respectively (Bird et al. 1987b) ... [Pg.21]

Figure 12 Bead-spring chain and ring models for N=10 The stress tensor expression can be written analogously to equations (59) to (62), thus ... Figure 12 Bead-spring chain and ring models for N=10 The stress tensor expression can be written analogously to equations (59) to (62), thus ...

See other pages where Stress tensor bead-spring model is mentioned: [Pg.9]    [Pg.75]    [Pg.754]    [Pg.314]    [Pg.490]    [Pg.205]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Bead model

Bead-spring model

Springs

Stress model

Stress modelling

© 2024 chempedia.info