Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

State specific rate constant RRKM theory

The connection between the Porter-Thomas nonexponential N(r, E) distribution and RRKM theory is made through the parameters k and v. The average of the statistical state-specific rate constants k is expected to be similar to the RRKM rate constant k(E). This can be illustrated (Waite and Miller, 1980) by considering a separable (uncoupled) two-dimensional Hamilton H = + Hy whose decomposition path is... [Pg.292]

The classical unimolecular dynamics is ergodic for molecules like NO2 and D2CO, whose resonance states are highly mixed and unassignable. As described above, their unimolecular dynamics is identified as statistical state specific. The classical dynamics for these molecules are intrinsically RRKM and a microcanonical ensemble of phase space points decays exponentially in accord with Eq. (3). The correspondence found between statistical state specific quantum dynamics and quantum RRKM theory is that the average of the N resonance rate constants fe,) in an energy window E + AE approximates the quantum RRKM rate constant k E) [27,90]. Because of the state specificity of the resonance rates, the decomposition of an ensemble of the A resonances is non-exponential, i.e. [Pg.412]

The conclusion one reaches is that quantum RRKM theory is an incomplete model for unimolecular decomposition. It does not describe fluctuations in state-specific resonance rates, which arise from the nature of the couplings between the resonance states and the continuum. It also predicts steps in k E), which appear to be inconsistent with the actual quantum dynamics as determined from computational chemistry. However, for molecules whose classical unimolecular dynamics is ergodic and intrinsically RRKM and/or whose resonance rates are statistical state specific (see Section 15.2.4), the quantum RRKM k E) gives an accurate average rate constant for an energy interval E E + AE [47]. [Pg.415]

It is also interesting to consider the classical/quantal correspondence in the number of energized molecules versus time N(/, E), Eq. (8.22), for a microcanonical ensemble of chaotic trajectories. Because of the above zero-point energy effect and the improper treatment of resonances by chaotic classical trajectories, the classical and quantal I l( , t) are not expected to agree. For example, if the classical motion is sufficiently chaotic so that a microcanonical ensemble is maintained during the decomposition process, the classical N(/, E) will be exponential with a rate constant equal to the classical (not quantal) RRKM value. However, the quantal decay is expected to be statistical state specific, where the random 4i s give rise to statistical fluctuations in the k and a nonexponential N(r, E). This distinction between classical and quantum mechanics for Hamiltonians, with classical f (/, E) which agree with classical RRKM theory, is expected to be evident for numerous systems. [Pg.314]


See other pages where State specific rate constant RRKM theory is mentioned: [Pg.7]    [Pg.399]    [Pg.303]    [Pg.7]    [Pg.468]    [Pg.516]    [Pg.66]    [Pg.273]    [Pg.140]    [Pg.455]    [Pg.54]    [Pg.437]    [Pg.397]    [Pg.412]    [Pg.138]    [Pg.637]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



RRKM

RRKM theory

Rate Theory

Rate constant RRKM theory

Specific rate

Specificity constant

State specific

State specific rate constant

State-specificity

© 2024 chempedia.info