Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spherical polyelectrolyte brushes catalysis

Lu Y, Wittemann A, Ballauff M (2009) Supramolecular structures generated by spherical polyelectrolyte brushes and their application in catalysis. Macromol Rapid Commun 30 806-815... [Pg.162]

However, alloy nanoparticles turned out to be fully stable under the same conditions. This finding is corroborated by an analysis of the composite particles before and after catalysis by cryogenic TEM. No change or leaching of the nanoparticles is observed. Moreover, repeated use of the composite particles as catalysts did not lead to a noticeable decrease of catalytic activity. Hence, spherical polyelectrolyte brushes present a system that allows us to generate and to utilize alloy nanoparticles that exhibit properties widely differing from the properties of the respective bulk alloys. [Pg.11]

Here we have reviewed our recent studies on metallic nanoparticles encapsulated in spherical polyelectrolyte brushes and thermosensitive core-shell microgels, respectively. Both polymeric particles present excellent carrier systems for applications in catalysis. The composite systems of metallic nanoparticles and polymeric carrier particles allow us to do green chemistry and conduct chemical reactions in a very efficient way. Moreover, in the case of using microgels as the carrier system, the reactivity of composite particles can be adjusted by the volume transition within the thermosensitive networks. Hence, the present chapter gives clear indications on how carrier systems for metallic nanoparticles should be designed to adjust their catalytic activity. [Pg.20]


See other pages where Spherical polyelectrolyte brushes catalysis is mentioned: [Pg.1]   


SEARCH



Polyelectrolyte catalysis

Spherical polyelectrolyte

Spherical polyelectrolyte brushes

© 2024 chempedia.info