Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectrum valence

Correlations have been found between certain absorption patterns in the infrared and the concentrations of aromatic and paraffinic carbons given by the ndA/method (see article 3.1.3.). The absorptions at 1600 cm due to vibrations of valence electrons in carbon-carbon bonds in aromatic rings and at 720 cm (see the spectrum in Figure 3.8) due to paraffinic chain deformations are directly related to the aromatic and paraffinic carbon concentrations, respectively. )... [Pg.60]

Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals. Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals.
Valence Vibrations. pCH and pCD. In the 3100 cm region the infrared spectrum of thiazole shows only two absorptions at 3126 and 3092 cm F with the same frequencies as the corresponding Raman lines (201-4) (Fig. I-IO and Table 1-23). In the vapor-phase spectrum of... [Pg.56]

Figure 8.19 X-ray photoelectron spectrum, showing core and valence electron ionization energies, of Cu, Pd, and a 60% Cu and 40% Pd alloy (face-centred cubic lattice). The binding energy is the ionization energy relative to the Fermi energy, isp, of Cu. (Reproduced, with permission, from Siegbahn, K., J. Electron Spectrosc., 5, 3, 1974)... Figure 8.19 X-ray photoelectron spectrum, showing core and valence electron ionization energies, of Cu, Pd, and a 60% Cu and 40% Pd alloy (face-centred cubic lattice). The binding energy is the ionization energy relative to the Fermi energy, isp, of Cu. (Reproduced, with permission, from Siegbahn, K., J. Electron Spectrosc., 5, 3, 1974)...
The photoelectron spectra of pyridazine have been interpreted on the basis of many-body Green s function calculations both for the outer and the inner valence region. The calculations confirm that ionization of the first n-electron occurs at lower energy than of the first TT-electron (79MI21201). A large number of bands in the photoelectron spectrum of 3,6-diphenylpyridazine in stretched polymer sheets have been assigned to transitions predicted... [Pg.8]

An important property of the surface behaviour of oxides which contain transition metal ions having a number of possible valencies can be revealed by X-ray induced photoelectron spectroscopy. The energy spectrum of tlrese electrons give a direct measure of the binding energies of the valence electrons on the metal ions, from which the charge state can be deduced (Gunarsekaran et al., 1994). [Pg.125]

At the other end of the conduction spectrum, many oxides have conductivities dominated by electron and positive hole contributions to the extent that some, such as Re03, SnOa and tire perovskite LaCrOs have conductivities at the level of metallic conduction. High levels of p-type semiconduction are found in some transition metal perovskites especially those containing alio-valent ions. Thus the lanthairum-based perovskites containing transition metal ions, e.g. LaMOs (M-Cr, Mn, Fe, Co, Ni) have eirlranced p-type semiconduction due to the dependence of the transition metal ion valencies on the ambient... [Pg.161]

Figure 2 Example of an energy-loss spectrum, illustrating zero loss, and low-loss valence band excitations and the inner shell edge. The onset at 111 eV identifies the material as beryllium. A scale change of 100X was introduced at 75 eV for display purposes. Figure 2 Example of an energy-loss spectrum, illustrating zero loss, and low-loss valence band excitations and the inner shell edge. The onset at 111 eV identifies the material as beryllium. A scale change of 100X was introduced at 75 eV for display purposes.
In addition to dielectric property determinations, one also can measure valence electron densities from the low-loss spectrum. Using the simple free electron model one can show that the bulk plasmon energy E is governed by the equation ... [Pg.140]

Two other types of peaks that can be observed in the XPS spectrum of solid materials are referred to as a shake-up and shake-off satellites. When a core-level electron is ejected from an atom by photoemission, the valence... [Pg.263]

An important property of the electron Hamiltonian (Eq. (3.3)) is that for arbitrary hopping amplitudes the spectrum of the single-electrons slates is symmetric with respect to c=0 if is the electron amplitude on site n of an eigenstate with energy c, then the state with amplitudes —)"< > is also an eigenstate, with energy -c. In particular, in the uniformly dimerized stale, the gap between the empty conduction and the completely filled valence bands ranges from -A, to A(). [Pg.362]

Here, W is a cut-off of the order of the 7t-band width, introduced because the right-hand side of Eq. (3.13) is formally divergent. As in the discrete model, the spectrum of eigenstates of Hct for A(a)= Au has a gap between -Ao and +Alh separating the empty conduction band from the completely filled valence band. [Pg.363]


See other pages where Spectrum valence is mentioned: [Pg.308]    [Pg.1320]    [Pg.1323]    [Pg.1324]    [Pg.1324]    [Pg.1860]    [Pg.2216]    [Pg.372]    [Pg.434]    [Pg.314]    [Pg.20]    [Pg.524]    [Pg.203]    [Pg.138]    [Pg.140]    [Pg.150]    [Pg.289]    [Pg.300]    [Pg.301]    [Pg.306]    [Pg.327]    [Pg.331]    [Pg.371]    [Pg.386]    [Pg.30]    [Pg.60]    [Pg.84]    [Pg.176]    [Pg.47]    [Pg.1105]    [Pg.177]    [Pg.80]    [Pg.179]    [Pg.137]    [Pg.79]    [Pg.363]    [Pg.365]   


SEARCH



© 2024 chempedia.info