Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic terms and crystal field states

3 Energy level diagrams and crystal field spectra [Pg.52]

The energy level diagram for Ti3+ in fig. 3.4 shows the manner by which the 2D spectroscopic term is resolved into two different levels, or crystal field states, when the cation is situated in an octahedral crystal field produced by surrounding ligands. In a similar manner the spectroscopic terms for each 3d configuration become separated into one or more crystal field states when the transition metal ion is located in a coordination site in a crystal structure. The extent to which each spectroscopic term is split into crystal field states can be obtained by semi-empirical calculations based on the interelectronic repulsion Racah B and C parameters derived from atomic spectra (Lever, 1984, p. 126). [Pg.53]


Figure 3.10 Partial energy level diagram for the Fe3+ or Mn2+ ions with 3tfi configurations in high-spin states in an octahedral crystal field. Only sextet and quartet spectroscopic terms and crystal field states are shown. Note that the same energy level diagram applies to the cations in tetrahedral crystal fields (with g subscripts omitted from the state symbols for the acentric coordination site). Figure 3.10 Partial energy level diagram for the Fe3+ or Mn2+ ions with 3tfi configurations in high-spin states in an octahedral crystal field. Only sextet and quartet spectroscopic terms and crystal field states are shown. Note that the same energy level diagram applies to the cations in tetrahedral crystal fields (with g subscripts omitted from the state symbols for the acentric coordination site).

See other pages where Spectroscopic terms and crystal field states is mentioned: [Pg.50]   


SEARCH



Crystal field

Crystal-field states

Crystallization fields

Spectroscopic terms

© 2024 chempedia.info