Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral moment dynamical corrections

For a computation of the zeroth and first moments, this lowest-order Wigner-Kirkwood correction is often sufficient, but the second and higher spectral moments require additional dynamical corrections [177]. [Pg.216]

Induced dipole autocorrelation functions of three-body systems have not yet been computed from first principles. Such work involves the solution of Schrodinger s equation of three interacting atoms. However, classical and semi-classical methods, especially molecular dynamics calculations, exist which offer some insight into three-body dynamics and interactions. Very useful expressions exist for the three-body spectral moments, with the lowest-order Wigner-Kirkwood quantum corrections which were discussed above. [Pg.229]

Classical and semiclassical moment expressions. The expressions for the spectral moments can be made classical by substituting the classical distribution function, g(R) = exp (— V(R)/kT), for the quantum expressions. Wigner-Kirkwood corrections are known which account to lowest order for the static quantum corrections, Eq. 5.44 [177, 292]. For the second and higher moments, dynamic quantum corrections must also be made [177]. As was mentioned in the previous Chapter, such semiclassical corrections are useful in supplementing quantum computations of the spectral moments at large separations where the quantum effects are small the computational effort of quantum calculations, which is substantial at large separations, may thus be avoided. [Pg.289]

Higher-order classical moments have also been reported. We mention the classical expressions for the translational spectral moments M , with n = 0, 2, 4, and 6, for pairs of linear molecules given in an appendix of [204]. Spectral moments of spherical top molecules have been similarly considered [163, 205], We note that for n > 1, spectral moments show dynamic as well as static quantum correction, which become more important as the order n of the spectral moments is increased. The discussions on pp. 219, and Table 5.1, suggest that, even for the near-classical systems, quantum corrections may be substantial and can rarely be ignored. [Pg.289]

F. Barocchi, M. Zoppi, and M. Neumann. First-order quantum corrections to depolarized interaction induced light scattering spectral moments Molecular dynamics calculation. Phys. Rev. A, 27 1587-1593 (1983). [Pg.484]

The approach to the evaluation of vibrational spectra described above is based on classical simulations for which quantum corrections are possible. The incorporation of quantum effects directly in simulations of large molecular systems is one of the most challenging areas in theoretical chemistry today. The development of quantum simulation methods is particularly important in the area of molecular spectroscopy for which quantum effects can be important and where the goal is to use simulations to help understand the structural and dynamical origins of changes in spectral lineshapes with environmental variables such as the temperature. The direct evaluation of quantum time- correlation functions for anharmonic systems is extremely difficult. Our initial approach to the evaluation of finite temperature anharmonic effects on vibrational lineshapes is derived from the fact that the moments of the vibrational lineshape spectrum can be expressed as functions of expectation values of positional and momentum operators. These expectation values can be evaluated using extremely efficient quantum Monte-Carlo techniques. The main points are summarized below. [Pg.93]


See other pages where Spectral moment dynamical corrections is mentioned: [Pg.462]    [Pg.311]    [Pg.320]    [Pg.213]    [Pg.149]    [Pg.37]    [Pg.149]    [Pg.32]    [Pg.160]    [Pg.232]    [Pg.189]   


SEARCH



Spectral correction

Spectral moment

© 2024 chempedia.info