Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sources of Other Deformed Shapes

The general analysis, while not difficult, is complicated however, the limiting case of the very elongated, essentially cylindrical drop is not hard to treat. Consider a section of the elongated cylinder of volume V (Fig. II-18h). The centrifugal force on a volume element is u rAp, where w is the speed of revolution and Ap the difference in density. The potential energy at distance r from the axis of revolution is then w r Apfl, and the total potential energy for the [Pg.30]

Princen and co-workers have treated the more general case where w is too small or y too large to give a cylindrical profile [86] (see also Refs. 87 and 88). In such cases, however, a correction may be needed for buoyancy and Coriolis effects [89] it is best to work under conditions such that Eq. 11-35 applies. The method has been used successfully for the measurement of interfacial tensions of 0.001 dyn/cm or lower [90, 91]. [Pg.31]

In the converse situation free of gravity, a drop assumes a perfectly spherical shape. At one point, the U.S. Space program tested this idea with the solidification of ball bearings from molten metal drops in microgravity conditions. [Pg.32]


See other pages where Sources of Other Deformed Shapes is mentioned: [Pg.30]   


SEARCH



Other Shapes

Other Sources

Shape deformation

© 2024 chempedia.info