Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Some Relevant Chain Extension Studies

A wide variety of long-chain fatty acids increase transdermal delivery the most popular is oleic acid. It is relevant that many penetration enhancers contain saturated or unsaturated hydrocarbon chains and some structure-activity relationships have been drawn from the extensive studies of Aungst et al. [22,23] who employed a range of fatty acids and alcohols, sulfoxides, surfactants, and amides as enhancers for naloxone. From these experiments, it appears that saturated alkyl chain lengths of around Cio to C12 attached to a polar head... [Pg.240]

The extensive research on microemulsions was prompted by two oil crises in 1973 and 1979, respectively. To optimise oil recovery, the oil reservoirs were flooded with a water-surfactant mixture. Oil entrapped in the rock pores can thus be removed easily as a microemulsion with an ultra-low interfacial tension is formed in the pores (see Section 10.2 in Chapter 10). Obviously, this method of tertiary oil recovery requires some understanding of the phase behaviour and interfacial tensions of mixtures of water/salt, crude oil and surfactant [4]. These in-depth studies were carried out in the 1970s and 1980s, yielding very precise insights into the phase behaviour of microemulsions stabilised by non-ionic [5, 6] and ionic surfactants [7-9] and mixtures thereof [10]. The influence of additives, like hydro- and lyotropic salts [11], short- and medium-chain alcohols (co-surfactant) [12] on both non-ionic [13] and ionic microemulsions [14] was also studied in detail. The most striking and relevant property of micro emulsions in technical applications is the low or even ultra-low interfacial tension between the water excess phase and the oil excess phase in the presence of a microemulsion phase. The dependence of the interfacial tension on salt [15], the alcohol concentration [16] and temperature [17] as well as its interrelation with the phase behaviour [18, 19] can be regarded as well understood. [Pg.1]


See other pages where Some Relevant Chain Extension Studies is mentioned: [Pg.199]    [Pg.170]    [Pg.5]    [Pg.94]    [Pg.379]    [Pg.397]    [Pg.309]    [Pg.134]    [Pg.1449]    [Pg.134]    [Pg.140]    [Pg.207]   


SEARCH



Chain extensibility

Chain extension

© 2024 chempedia.info