Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Some amino acids are preferred in a helices

The first sequence is from the enzyme citrate synthase, residues 260-270, which form a buried helix the second sequence is from the enzyme alcohol dehydrogenase, residues 355-365, which form a partially exposed helix and the third sequence is from troponin-C, residues 87-97, which form a completely exposed helix. Charged residues are colored red, polar residues ate blue, and hydrophobic residues are green. [Pg.17]

Different side chains have been found to have weak but definite preferences either for or against being in a helices. Thus Ala (A), Glu (E), Leu (L), and Met (M) are good a-helix formers, while Pro (P), Gly (G), Tyr (Y), and Ser (S) are very poor. Such preferences were central to all early attempts to predict secondary structure from amino acid sequence, but they are not strong enough to give accurate predictions. [Pg.17]

The most common location for an a helix in a protein structure is along the outside of the protein, with one side of the helix facing the solution and the other side facing the hydrophobic interior of the protein. Therefore, with 3.6 residues per turn, there is a tendency for side chains to change from hydrophobic to hydrophilic with a periodicity of three to four residues. Although this trend can sometimes be seen in the amino acid sequence, it is not strong enough for reliable stmctural prediction by itself, because residues that face the solution can be hydrophobic and, furthermore, a helices can be either completely buried within the protein or completely exposed. Table 2.1 shows examples of the amino acid sequences of a totally buried, a partially buried, and a completely exposed a helix. [Pg.17]

Alpha helices that cross membranes are in a hydrophobic environment. Therefore, most of their side chains are hydrophobic. Long regions of hydrophobic residues in the amino acid sequence of a protein that is membrane-bound can therefore be predicted with a high degree of confidence to be transmembrane helices, as will be discussed in Chapter 12. [Pg.18]

Beta (P) sheets usually have their p strands either parallel or antiparallel [Pg.19]


See other pages where Some amino acids are preferred in a helices is mentioned: [Pg.16]   


SEARCH



A Helix

A-helix preferences

Amino acids preferred

In a helix

© 2024 chempedia.info