Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sliding velocity surface activity

The dependence of friction on sliding velocity is more complicated. Apparent stick-slip motions between SAM covered mica surfaces were observed at the low velocity region, which would disappear when the sliding velocity excesses a certain threshold [35]. In AFM experiments when the tip scanned over the monolayers at low speeds, friction force was reported to increase with the logarithm of the velocity, which is similar to that observed when the tip scans on smooth substrates. This is interpreted in terms of thermal activation that results in depinning of interfacial atoms in case that the potential barrier becomes small [36]. [Pg.89]

Once temperature comes into play, the jumps of atoms between minima may be invoked prematurely, i.e., before the formation of instabilities, via thermal fluctuations. These thermally activated jumps decrease the force that is required to pull the surface atom, which leads to a decrease in the kinetic friction. The probability that a jump will be thermally activated is exponentially related to the energetic barrier of the associated process, which can be understood in terms of Eyring theory. In general, the energetic barriers are lower when the system is not at its thermal equilibrium position, which is a scenario that is more prominent at higher sliding velocities. Overall, this renders Fk rate or velocity dependent, typically in the following form ... [Pg.76]

The validity of Coulomb s law has been verified also on the nanoscale Zworner et al. [484] showed that, for different carbon compound surfaces, friction does not depend on sliding velocity in the range between 0.1 /xm/s and up to 24 /xm/s. At low speeds, a weak (logarithmic) dependence of friction on speed was observed by Gnecco et al. [485] on a NaCl(lOO) surface and by Bennewitz et al. [486] on a Cu (111) surface. This can be modeled when taking into account thermal activation of the irreversible jumps in atomic stick-slip [487],... [Pg.235]

Figure 5 Typical velocity relationship of kinetic friction for a sliding contact in which friction is from adsorbed layers confined between two incommensurate walls. The kinetic friction F is normalized by the static friction Fs. At extremely small velocities v, the confined layer is close to thermal equilibrium and, consequently, F is linear in v, as to be expected from linear response theory. In an intermediate velocity regime, the velocity dependence of F is logarithmic. Instabilities or pops of the atoms can be thermally activated. At large velocities, the surface moves too quickly for thermal effects to play a role. Time-temperature superposition could be applied. All data were scaled to one reference temperature. Reprinted with permission from Ref. 25. [Pg.77]


See other pages where Sliding velocity surface activity is mentioned: [Pg.284]    [Pg.532]    [Pg.181]    [Pg.250]    [Pg.131]    [Pg.323]    [Pg.285]    [Pg.596]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Sliding surface

Sliding velocity

© 2024 chempedia.info