Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simple Irreversible Reactions—Zeroth to Nth Order

The mass balance with homogeneous one-dimensional diffusion and irreversible nth-order chemical reaction provides basic information for the spatial dependence of reactant molar density within a catalytic pellet. Since this problem is based on one isolated pellet, the molar density profile can be obtained for any type of chemical kinetics. Of course, analytical solutions are available only when the rate law conforms to simple zeroth- or first-order kinetics. Numerical techniques are required to solve the mass balance when the kinetics are more complex. The rationale for developing a correlation between the effectiveness factor and intrapellet Damkohler number is based on the fact that the reactor design engineer does not want to consider details of the interplay between diffusion and chemical reaction in each catalytic pellet when these pellets are packed in a large-scale reactor. The strategy is formulated as follows ... [Pg.509]


See other pages where Simple Irreversible Reactions—Zeroth to Nth Order is mentioned: [Pg.303]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.303]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.453]   


SEARCH



5 -NTH

Irreversible reactions

Irreversible reactions order

Nth order

Nth-order reactions

Simple reaction

Zeroth-order

© 2024 chempedia.info